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1. INTRODUCTION

There ha_ recently be,an a surge of interest in 'active' methods of

noise a_d vibration control, in Which additional secondary sources

are used to cancel the sound or vibration from the original 'primary.

source. This intersut has been spurred by recent developments in

microprocnssor technologY, which make the economic implementation of

such techniques increasingly feasible.

Although the most fundamental work in this area is probably that

concerned with the physics of the interaction between the primary and

secondary sources, there are also impoz_ant c_sstions to be answered

regarding the methods by which the objectives of active control are

achieved. Active control systems can normally only be formulated if

it is assured that euperpositlon applies, i.e. that the ayste_ is

linear, and that the properties of the prls_ry field are constant

i.e. the excitation is stationary. Is many of the situations in

Which active noise control is appllsd, however, the properties of the

sound or vibration field are mildly nonlinear and mildly

nnnstationary. An active control system Rust be adaptive In order to

cope with these problems and consequently the use of adaptive methods

In active control ia widespread. The simplest form of such an

adaptive system is one in Which the 'best esti_Ite' of a solution

obtained assuming llnearity and statlonarlt7 is tried, a_d after

waiting for any transients to die away, the residual field is

examlned and the solution is adjusted to cancel this resldus. Such

'block adaptiv,_' schemes have been npplied to the active control of

random noise in ducts [i] and the multichannel control of harmonic

vibration [2].

In the field of signal processing there is a class of adaptive system

in which the properties of a digital filter are adjusted to minlmlse

a single, elsctrlcal, error signal on a timescals which is much

smaller tha_ that USed in the algorithms described above. There has

been a coneidszaDle literature build up over the past two decades

about such methods because of their i_portancs in the fields of

tslsco_unications, beamforming reed bio-msdical electronics. The

continuing interest is also demonstrated by the fact that there hays

been at least four tsK-t books pt_llshed in the last two years,

specifically on the subject of adaptive filtering [3,%,5,6]. A vezy



similar technique has also been used over a similar period of time in

control theory [13]. Unfortunately the si_ilarlty between tile two

traditions is not readily apparent from an examination of the two

bodies of literature.

The applloation of this knowledge to the problem of active control is

not, however, a straightforward matter. For example the use of an

adaptive filter to drive a loudspeaker in an active noise control

system whlch creates a 'zone of silence' in a room containing a noisy

machine is, rather cryptically, left as an exercise for the reader in

one recent book [ref. 6, page 300].

It is the purpose of this report to apply the philosophy adopted in

the derivation of one widely used metho_ for adaptive filter design,

to the problem of the multidimensional active control of periodic

excitations in physical systems.

The most general formulation of a multlchannel active control system

[8] involves the use of an array of _ensors to detect the

contributions from a number of primary sources before fee_ing them to

an array of filters feeding the secondary sensors. The use of such

detection sensors introduces the pesslbility of feedback paths from

the secondary sources to these sensors. Thus the system becomes

closed loop, even in the steady state, _aklng the problem of adaptive

adjustment difficult at best and, at worst, _mking the system

unstable.

Under certain circumstances these feedback paths are eliminated or at

least greatly reduced. A very impo_ant example of such a

simplification occurs when the primary excitation is periodic and has

a known fundamental frequency. Under these conditions a 'reference

signal' can be generated with an identical fundamental frequency and

containing all the harmonic components present in the primary field.

This signal can now be used to drive the secondary sources, via a set

of falters, thus dispensing with the detection sensors.

There are mny important noise and vibration problems which are

amenable to active control and also are nearly periodic. For

example, the active control of sound and vibration from reciprocating

or rotating machinery falls into this category. Two particular
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problemS which are currently being widely investlgated are the active

control of propeller induced cahln noise [9] and the 'higher

he,menlo' control of helicopter vibration [i0, ii]. In practice beth

of these problems have been formulated in terms of the minimisation

of the sum of the squared outputs from a number of error sensors

(microphones or accelerometers) By adjusting the inputs to m number

of sources (loudspeakers or shakers). These appllcations are thus

ex_plee of a more general class of multich_nnel or multivariate

active control system with a primary field of known form.

This report presents t_e results of a preliminary investigation into

the application of adaptive filtering to such multlchannel active

control systems. A review of ths techniques used for single channel

cancellation and their application to active control are first

pressnted in Section 2. Section 3 introduces an algorithm which has i

been developed to extend such meth0_s into multlchannel applications,

and discusses eoms of its properties. It is the authors' apinlon

that the careful application of adaptive filtering concepts to the

problems of active control can be very fruitful. There ere, however,

m number of questions which remain unresolved a_d some of these form

the basis of current work at ISVR.
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2, A_%PTIVE PILTERING IN SINr_ CSANNEL _z_u_

2,1, P/3A_TIVENOISE CONTROL

_al_ive noise ca_collatlon Is the name uss_ for a class of

oleatrleal a_aptlve systems typlfled by that shown in flgure 2,1.

It IB assu_e_ that a 'reference' slgaal is avallaDls WhlCh is

perfectly ¢orrslaten wlth the holes component of the 'primary'

signal, This is passed through a fllter and subtracte_ from the

primary elgnal to form the 'error' slgnal. The eanceller Is _apte_

so that the filter output is as close a match to the noise component

1_ the primary signal as can be obtalns_, The consequence of this Is

th_ the 'sEror' slgeal is s _etteE estlmate of the true 'elgeal',

f_om the 'signal Source'. Another result of th_e behavlour is that

the mea_ square value of the error slgnal le minimised ana this Is

the key to the o_eratlon of the canceller.

_ _ Primary Error

signal d(n] ._ ._ signal
e(nJ

.._ Filter

Linear output
process y(n)

/

, , signal x(n) filte/
I

Ff,Oure 2.1. Block df,_rcen 1.7.I,us_rot;f.ng a ¢l/pf.cal. nrra_gemen_ :for a_ec_rf, cul,
_$ue no£so concoUrse%on.
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Assume that the system is sampled and that the filter is transverQal

(FIR), rheas

I-i

y(n) = _ wi x(n - i) 42.1)
i=o

where wi is the i,th coefficient of the filter. Thus,

I-i

e(n) = d(n) - _ wi x(n - i) 42.2)

i=o

Since e(n) is a linear function of each filter coefficient, the r_sen
i
) square value of e(n), which is equal to the total error E, must be a

! quadratio function of each wi. The mean square value of e(n) can

never be negative, so the I + 1 dimensional error surface fo_d by

plotting the total error against each of the I filter coefficients

must have a unique global minimum. Due to the quadratic nature of

this error surface simple gradient descent methods can be used to

adapt the coefficlente in order to minimise the total error.

one such technique is the method of steepest descent where each

coefficient is adjusted at each iteration by an amount proportional

to the negative value of the gradient of the total error with respect

to that coefficient, i.e. i

aE

wiCk+l) = wi(k) - _ _wi 42"3)

for the k'_h Iteration.

Since E = e(n) 2, where the bar indicates a time average,

8E 8 e 2 2 e(n) 8e__{_N) (2.4)

Dut from equation 2.2.

#e(n)
...... x (n-i) (2.5)

The stee_st descent algorithm thus becomes
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wi(k+l ) = WI(M) + 2p e(n) x(n-i) (2.6)

If the instantaneous gradient is used to uMete the coefficients and

all the coefficients are adjusted at every sample _int then the

algorithm becomes:

wi(n+l) = wi(n) + a e(n) x(n-i) (2.7)

where u = 2_. This is known as the M algorit_ in the signal

processing literature and is attributed to Wi0row and Hoff [12]. It

is also • s_eoial class of Stochastic gradlent algorithm discussed in

the control literature [13]. Although the detailed origins of such

etoohastis gradient algorlt_ns appear rather obscure, they have

obviously grown out of methods of numerical analysis used since the

19th Century.

This stochastic gradient (or SG) algorithm has been found to converge

under a wide variety of conditions a_d is very straightforward ta

program for real time digital signal processing, consequently it has

become very popular in a wide variety of appllcatlons [6]. The

algorlthm has been widely analysed in terms of its stability,

convergence tlme, and _issdJustment error (due to the coefficients

continuously being changed even when the bottom of the error surface

has been reached ). Most theoretical a_alysls _e an i_lloit

assumption that the filter is converging slowly. This is often

expressed in the statement that the instantaneous values of the

coefficients are independent of the current input signal.

Theoretical treatments which deal with t_e full dynamic behaviour of

the algorithm have only recently begun to e.mrge [5 (page 48) 14]. A

brief 6isousslon of the n_st widespread current theoretical treatment

is, however, helpful in understanding some of the li_itatlons of Bach

algorithms.

The discussion below is baseo on that presented by Widrow in 1971

[15] and usn_ in the boom by Wldrow and Stearns [6]. The analysis

is based on expressing the update equation 2.7 in matrix form for all

coefficients,
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Let

I IW n = Wo(n) w_(n) w2(n ) ... Wi_l(n )

[ 13X_D = x(n) x(n-l) x(s-2) ... x[n-I+l)

Equation 2.7 can now be expressed as

Wn+ I = W n + a e(n) _ 42.8)

the output of the filter can also _e conveniently expressed as

y(n) =X_W n, so e(n) = d(n) - Xn T Wn (2.9)

Thus,

Wn+ 1 = W n + a(d(n) Xn - X_ X_ Wn) 42.10)

The analysls at thle point is completely general but to ma_e the

algubra tractable, the assu_ptlons of a statloeary random input aMd

of ,slow' adapt$on are used. The statlonarity of the input is first

used to define an eeti_tlon value of all quantities for a large

nut,per of input sequences generated by the same stochastic process.

Secondly we assume that the instantaneous value of the coefficients

expressed in the 'weight vector' W n are uncorrelated with the current

Bet of inputs in Xn. This second assumption iB obviously dubious for

fast adaption rates [14] but for .slow' adaption it does not appear

usrsasonable, a_d does lead to a relatively straightforward average

update equation. The asumption a11ows expectation values of X_nn Xn_T_

and W_ to be evaluated separately, and so the averags behavlour of

the coefficients, over a_ ensemble of inputs, can be expressed as_

Wn+ 1 = Wn + a (P - R Wn) [2.11)
I ....

w_ere P = E(d(n) Xn) and R = E(X n XnT)

7.



i.e. P is the vector of cross correlations and R is the matrix of

input autccorrelations, E is the expectation operator.

The term in brackets in equation 2.11 corresponds to the average

gradient, and by setting this to zero for all coefficients, we obtain

the optimum, or Wiener, set of coefficients:

W_et = R-1 P (2.12)

By exprossing P in terms of R and _oo_ using this expression, and

defining

as the vector of coefficient misadJuatment,ons obtains the equation

Thus,by icduction,

V n = [_ - a Rzn V0 (2,Z5)

The convergence of the _Tgorlthm indicated by the vector V n tending

to zero as n becomes large and so is dependent on the values of R.

This dependence can be made clearer if the misa_Just_nt vector is

transformed from V to V', W_ers:

V' -i= 9 Y ' :. V = Q V' (2,Z6)

and _ is the matrix of normalised eigenvectors of R, with the

property that Q-I Q = i.

This transformation eliminates the cross-coupling between the actions

of the various filter coefficients due to the off-diagonal terms of

in equation 2.15. This can be demonstrated by writing

R = 9 _Ao-z (2.i_)

8.



w_ere A is a diagonal matrix containing the eigenvalues of 2.

_y using these expressions for V and F= (equations 2.16 and 2.17) in

equation 2.14woobtain_

t t w

vn+l = vn - =Av n (2.Ie)

J The second term on the R._.S. of the equation represents (- a)

multiplied by the gradient of the error with respect to Vn'. Since

only has diagonal terms, it is clear that the gradient of the error

with respect to each coefficient of Vn' can only1_ depensnt On that

value. The set of coefficients in V' must thus describe the

principal axes of the error surface. Rewriting equation 2.18 as

0

_n__+z= (_- = A) v_' (2.19)
uw

the tlme hlstoly of the ith coefficient Of v n, vi(n) say, can now he

written as a scalar equation,

q

V i (n+l) = (i - aAi) Vi(o) (2.20)

since equation 2.19 describes a set of independent difference

equations, Ai is thus the ith sigenvalue of 2,

This sot of equations has _een usod to describe _oth the stability,

a_d the speed of convergence of the algorithm. Equation 2.20

describes a first order reoursion whose transient response _a a

single exponential. In order for the algorithm to _e stable the

magnitude of Vi'(n+l ) must _e lees than that of Vi'(n) thus

Ii -- _ AiJ _ i (2.21)

•'. 1 • 1 -- G Ai > -i Or 0 < U < _ (2,22)
Ai

Since each Ai is real and positive. This condition will be most

stringent for the largest elgenvaluo, Amax, which will dete_mino the

largest value of a which can _e used while keeping the algorithm

stable, i.e.

a < _ (2.23)

9,



However, A_ X is less than or equal to the trace of the

autocorrslatlon matrix, which is approximately equal to the mean

equazed value of the reference 81qnal multlplie_ by the order of the

filter (I). So

Areax ( I xz (2.24)

and a condition for stability which is mere restrictive than 2.23 but

more easily applied is that

0 < a < 2 (2.25)
I Xz

i
The tlme constant of convergence of vi(n), defined as the number of

samples taken for it to fall by i, may
Ee determined for equatlon

2.20 aS

1

Ti = _n (i - aAi) _ _ if _ Ai << 1 (2.26)

The equatlon which takes longest to converge, i.e. has the laxge_

time constant, TmaX, will be that containing the smallest values of

Ai, AntiR say,

1 (2.27)
Tr_ax = e _min

This ter_ will generally dominate the convergence of the filter, so

we let Tr_ax = 7, an estimate of the overall time constant of

convergence. TO obtain the smallest value of this overall time

constant we let u take its largest value consistent with stability

qiven by equation 2.23, to obtain)

2 Ami n

This is a well known result and is widely quoted as being the major

drawback of the SG algorith_ when applied to signals with a large

'elgenvalue spread'. A practical estimate of the ratio of the

i0.



maximum to minimum elgenvalue (sometimes called the condition number

o£ the matrix [16] ) can _e obtained by using the fact that this ratio

is always less than or equal to the square of the modulus 0£ the

largest spectral component of the reference signal dlvlde_ by the

square of the modules of its smalleet e_ectral compoasnt [16]. Thus

the eigenvalue apread is related to the dynamlc range of the spectrum

of the reference slgnal.

one area in w_Ich adagtlve filters are widely used Is in

co_unicatlons channels. The signals in such systems are often

speech waveforms, whose spectrum has a large dynamic range. The

performance of standard SG algorlthms in this application has thus

been disappointing because of the large elqenvalue spread in the

slgnals. Thle has prompted the eearth for instilled algorithms which

avoid this convergence time problem. A good review of one such

msthed is given in [16], in Welch the input signal is tranefozme_

before being filtered in an attempt to ensure that the adaptive

coefficients used on the transformed data correspond to the ptlncIpal

axis of the error surface. Although the transformation whlch

Optionally achieves this obJectlve is rather obscure [the

Karlunen-Loeve transformation), it is shown that the Discrete Fourier

TranefozT_atlon has a nearly_optlmal performance. This further

i encourages an interpretatlon of the frequency domaln as being a

useful way of viewing the elgenvaluee which are, after all, the

i strengths of the different orthogonal components in the reference

signal. The frequency domain LM_ algorlthm was origlnally introduced

[17_ as an efficient implementatlon of the time domain LMS algorlthm.

It has been found, however, that by choosing the co_verqenoe

coefficient in each frequency bin to be inversely propoftlonal to the

signal power in that bln, considerable improvements in adaption time

are achieved. Zn general terms, this corresponds to being able to

choose _ separately for each of the decoUpled recursive equations

i _.2o ensuring that each of the .modes, decays at the same rate.

other approaches to adaptive filterlngwhich are potentially faster

) than the time domain LMS algorithm are those using lattice structures

I [ref 6, p 154] and those using recurelve least squares or fast Kalman

t algorlthms [18].

t
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2.2. ADAPTIVE CANCELLATION OF PERIODIC SIGNALS

If the reference signal in an adaptive canceller is made up of a

nu_0er of sinusoids, considerable simpllfications can occur in both

the implementation and analysis of the algorithm. The latter was

originaly investigated by Glover [19] Who showed that the behaviour

of such an adaptive canceller could be approximated by a linear time

Invariant filter. The approx_nations beco_ exact if the sinusoids

in the zefsrenoe signal have an exactly integer number of samples per

cycle, in other words they are synchronously sampled, and the filter

length contains an integer number of cycles of the reference elgnal.

Under this condition the _ehavlour of the system, fro_ the primary

signal to the error signal, can be described exactly by that of a

linear time Invariant notch filter, the bandwldth of which is

determined by the convergence coefficlsnt.

Only two filter coefficients are needed for each sinusold in the

reference signal, which can lead to considerable computational

savings.

TO illustrate these points a simple simulation of an adaptive

canceller is presented with a single slnusoidal reference signal,

sampled at exactly four samples per cycle. The normalised frequency

of the reference signal is that exactly I/4 and

x(n)= cos (n_/2) (2.30)

This signal _ay be generated using the recurelon equationl

x(n) = -x(n-2) with X(O) = i, x(-l) = 0 (2.31)

one advantage of using such a reference slgnal is that only a two

point FIR filter need be used to generate elgnals with arbitrary

amplitude and phase, and thla filtering operation _as the

interpretation that if

y(n) = wo x(n) + wI x(n-l) (2.32)

this in equal to

12.



y(n) = w0 cos (en/2) + wI sin (nrr/2) (2.33)

In this case, there is no distinction between a time domain algorithm

and a frequency domain algorithm since the two coefficients are

already operating on the 'real' and ,imaginary, parts of the only

frequency present.

The primary signal in the s_mulatlon has the form

d(n) = -1.0 cos (nv/2) + 0.9 sin (nv/2) (2.34)

A two coefficient fllter is updated using the st_dsrd SG algorithm

to Minimise the difference between its output, y(n), and the primary

signal d(n). The instantaneous value of this error singal e(n) is

shown plotted for 128 samples in figure 2.2. Also show_ is the

square of this signal averaged with a two point moving average

filter,

E(n) = (e2(n) + e2(n- 1))/2 (2.25)

and the trajectories of the two coefficients, since e(n) has a

normalised frequency of 1/4 , the alternating part of e2(n) has a

normallsed frequency of 1/2 and may be accurately averaged over two

points, as in equation 2.35.

A convergence coefficient of a = 0.i was used in this slmulatlon,

althou_1 valses of up to a = 2 were stable, and the fastest

convergence is given When a = 1 in which case the filter adapts

within one cycle.

If the standard theory, outlined above, is used to analyse this

system, the task is Considerably simpllfied by noting that for x(n) =

Co s ( nTr/2 ),

R = 1/2 __ (2.36)

and the two elgenvalues of _Rare beth equal to I/2.

The convergence of the coefficients is thus already independent,

without transformation. The update equatlon 2.14 thus becomes

13.
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_Dil = (1 - G/2) VD (2.37)

Hot only is the convergence of the coefficients independent according

to this equation, but their tJJ_e const_ts of convergehce _m also

predicted to be equal.

This is exactly as observed in figure 2.2., although the predlcted

ti_ conet_tnt of convergence is £ound to be in erzor for f_t

a_aptlon. Equation 2.33 predicts that if m = 2, so th_ the tsm in

brackets is zero, then the system will a_apt within cos cyolc. It

also predicts that the system will be stable if the tezln _h _ra_tn

is neazly equal to -i i.e. _ le neaJcly equal to 4. _hle le cle_ly

at variance with what is found in the simulation, and the error Corns

from the ass_mgtisn of 'slow' adaption in the demlva_lon in SeCtion

2,1.

Applying Glovers analysis [19] to this system, the equlvalont

transfer function between the error signal and desired e_nal le

£ound to _e equal tol

__(ZZ) = Z2 + 1 (2.38)
D(Z) Z2 + I -

This transfer functio_ has a l_ir of zeros at Z = _J and a pale Of

poles at Z = • J Va_ i'.'If u = 0 the pOles and zeros are c0incideht

and the transfer function is unity, i.e. it never adapts,

ek_pected. If u = 1 the pOles will lle at the origin of the Z plans,

and the transfer function loses its recurslve for_, hec0ming ah

entirely FIR system and having e response that dies out _fithin two

samples. If s approaches 2 the positlon of the poles approach *i,

which predicts that the system i8 unstable for u = 2. All of these

properties are found e_ctly in the simulation Which suggests that

the equivalent transfer function approach does predict the full

'dynamic' h_havlour Of the algorithm.

The difference equation _tween the error sequence and the desize_

sequence, corresponding to the transfer function in equatloo 2.38, is

15.



e(n) = dan) + d(n-2) - (.1. - u) e(n-2) (2.39)

Nots that tf the desired signal has the same frequency as the

reference it will also obey the difference equation d(n - 2) = -d(n),

by analogy with ec_Jatlon 2.31, asd the difference equation becomes

e(n) = (a - i) e(n- 2) (2.40)

This Is similar In fon_ to equation 2.37, and predicts the error

response to be that of a simple first order system (at half the

sample rate of d(n)) as found in the slmulatlons.

If a number of harmonic frequencies are present in the primary input

it has _een shown [20] that there are Considerable advantages in

using a reference signal w_ioh is a periodic inpulse train with the

same fundamental period as the primary, say N samples, Be

xCn) = /- B(n - P,N) (2.4z)
k=-m

This can reduce the number of operations required to implement the

algorithm from 2N multiplications and 2N eddltions per sample to one

addition per sample. This reference signal also leads to a

particularly simple equivalent transfer func_clon.

The behaviour of this harmonic algorithm can also be analysed using

the _thod outllned in Section 2.1. Although we nasnot expect to

obtain reliable predictions of the response if the system is adapting

'quickly', some additional insights are gained by examining the

autocorrelation matrix w_ich has the special form in this case;

R = _I. So again the convergence of the coefficients is independent

and they all converge with the same time constant since the

elgenvalues are equal. If a reference signal of this form can be

USed the convergence of the algorithm will be as fast as any ether

algorlthm which attempts an o_hogonallsatlon of the input prier to

adaptlon.

16.



2.3. APPLICATION TO ACTIVE CONTROL

An active control system with a single secondazy source and a single

error sensor can be considered as a generalisation of an a_aptive

canceller. The most _mportant difference is the introduction between

the filter output and error summing Junction of an extra transfer

function to account for the responses of the source and sensor and

that of the system to be controlled. This secondary path, With

transfer function C, is illustrated in figure 2.3 in which the

notation normally associated with active noise c08trol has been

substituted for the signal processing nomenclature used in figure

2.1. Note that s(n) is now added to d(n), rather than being

subtracted as in figure 2.1. T_is has no effect on the analysis

leadlng to the filter update equation above, equation 2.6, except to

change the sign of the update term.

The introduction of the secondary path transfer function into a

canceller using the standard SG algorit_ above will generally canes

instability [21]. This is _ecause the error signal Is not correctly

'aligned' in time with the reference signal, due to the presence of

C, when the gradient estimate ie calculated.

There are a number of possible schemes for realigning these signals

so an to obtain an unbiased gradient estimate and thus achieve

convergence, one method has been recently terT_d the 'filtered x'

algorithm [reference 6, p 288], although it wan also reported h¥

Burgess in 1981 [22], and has an intuitive interpretation in terms Of

the block diagram of figure 2.3. If the adaptive filter is asSL_ed

to be changing only very slowly compared to the tlmsscaln Of the

dynamic behaviour of the error path C, then the system is nearly

equivalent to that drawn in figure 2.4, with these elements reversed.

If we now redefine the reference signal as being z(n) in figure 2.4.,

it is clear that a standard SG algorithm could be used on this

equivalent system. The update equation in this case Would bel

wi (n+l) = wi[n ) u e(n) r(n-i) (2.%2)

However the signal r(n) is not available in the physical system of

figure 2.3. An approxlmatlon to it can, however, be artificially

generated by passing x(n) through an electrlcal filter which is
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f

arranged to have a similar response to that of the error path C,

When this algorlthm is implemented two suprlsing things are obasrved.

Firstly the convergence of the filter can be aehleve_ much more

qulckly than the above argument would suggest, and mecondly the

algorithm appears to _3 very tolerant of errors made in the

eetlm&tlan of C by the filter generating r(n).

2.4. FILTERED X ALGORIT_ AT A SINGLE FREQUENCY

It has been found that considerable insight can be obtalned into the

behaviour of the filtered x algorlth_ if a single, e_chronoumly

sampled sinusold is used am a reference signals Rn eY_ct theoretical

analysis of the algorithm ca_ be performed in this case, which is

presented in the next section. We concentrate here on the results of

a computer slmulation using a reference slngal x(n) = cos(nff/2), as

in section 2.2. above.

The block dlagram of the simulation is shown in flgure 2.5. in Which

the primary signal is derived from the reference wlth a 2 polmt PIR

filter, and the error path is modelled as a pure delay of I0 samplSe o

The signal r(n) is generated by passing x(n) through an e_ct version

of the error path, although in this case delays of integer perlo_e of

the reference have no effec_ and a delay of two samples produces the

s_e signal as a delay of ten samples.

e(n)

- I Adaptive ] ___ J z-tOx(n) - [ filter y(n) ) C = S(n)--

= cos(n-rr 12

J 8= z:z Ij - rinJ

_gure 2.5. B_OC_ _tf,oor_n of _he s_nuT, a_on performed ¢o _nues¢_gaCe Chin
perJorm_nca of _ho _1._ered x a_gor_h_ u_h _ eSn_o_d_

r_srence Sf_$.
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Figure 2.6 shows the square of the error signal, averaging over two

samples using equation 2.35, for 128 samples of the si_ulatlon using

various values of the convergence coefficient, u. It Is founG that

values of u approaching unity do not give a stable system, in

contrast to the case w_ere the error path is absent as consldsred

above. T_e fastest convergence is observed with a = 0.i, as im

figure 2.6D. It is instructive to also observe the behaviour of the

averaged error signal for various other values of u. For example

those for a = 0.05 and a = 0.2 are presented in fi_res 2.6a and c.

It is strlklsg how these graphs are re_nlscent of the overdamped and

underdamped response of a simple second order system. Figure 2.6

would, by analogy, correspond to the ca_e of critical damping.

_Ithough the error for all cases presented in figure 2.6 eventually

decays away to zero, unstable Dehavloer is observed when u is greater

than about 0.3, in which case the amplitude of the oscillations

observed in figure 2.6c grow with each cycle. If a = 0.3, the

gerlc_ of these oscillations corresponds to the delay in the error

poth, if a is reduced the period of oscillations becOlTlee

progressively longer as they become more heavily dampod.

The convergence h_haviour of this system with various other delays in

the error path has also been investigated for various values of 6.

The "Convergence t_e. of adaption, measured as being when the

averaged error decays below 5% of its initial value and does not

o_sequently rise above this value, is plotted against u for these

simulatlons ia figure 2.7. The different cHrvss correspond to

various values of pure delay in the error path. The convergence tlme

of the algorithm with no error path is given by the diagonal llne and

it is interesting to note how all the curves tend to this one for

very small values of u. With no error path the convergence time is

inversely proportional to u, in agreement wlth equation 2.26. The

value of _ for which the convergence time is fastest is plotted

against the delay in the secondary path In figure 2.8. The optimum

value of u is found to be approximately equal to I/4D in this

simulation, w_ere 0 is the number of cycles delay in the secondary

path. This gives a quantitative form to the intuitive result that

the convergence must slow down as the response of the secondary path

gets longer.
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Figure 2.7 can also be used to obtain the minimum convergence t_me

for a variety of delays in the error path. Thls is plotted in figure

2.9, which illustrates that the minimum convergence time rises in

proportion to the delay in the secondary path. In this simple case,

the minimum time for the total mean square error to converge to

within 5% of the final value is about twice the delay in the

secondary path. If the log of the mean square error is plotted

against time in the simulations, two distinct regions of the

convergence are observed. Firstly there is a porlod during whlch the

mean square error does not change. This lasts for • time

approximately equal to the delay in the secondary path and is

obviously due to the effects of the adaptive filter taking some time

to propagate through to the error. Secondly the decay of the error

has an envelope which is approximately exponential, whether the decay

is monotonic or oscillatory. In the simulations porfor_gd above the

sum of this initial delay and time taken for the exponential decay to

5% of the initial mew square value (i.e., an attenuation of 13 dB)

was found to be approximately twice the secondary delay. Thus the

fastest exponential decay rate is about 13 dB per unit of secondary

delay, mad the time constant for this exponential decay to fall to

I/e of its inltial value (i.e., -8.7 de), is approximately 0.67 times

the secondary delay.

These observations can be used to predict the convergence time

Oefieed according to different criterion to that used above. Sor

example, the time for the mean square error to fall to i% of its

initial value (-20 dB) will be approximately (I + 0.67 x 20/8.7) =

2.5 times the secondary delay. Similar trends in convergence time

are observed in simulations with mere complicated secondary paths, in

which recurelve terms as well as an overall delay are used.

2.5. _ALYSIS OF SINGLE FREQUENCY ALGORITHM

In this section we use the philosophy of approach developed by GloVer

[19] to obtain an equivalent transfer function between the desired

sigoal, considered as the input to the system, and the error signal,

considered as the output of the system. It is found that if the

25.



reference is a synchronously sampled sinusoid, or the sum of a number

of these, then the adaptive canceller _ehavee exactly llke a linesr,

time iovariant system between this input and output. The transfer

function can thus be used to calculate the response of the system to

any input excitation and also, more Importantly, can be used to

investigate the stability of the algorlt_m by examining the positions

of the pOles of the transfer function.

Using the nor_enclature in figure 2.5, in which the adaptive filter is

fe_ from a reference signal of the form

x(n) = cos (_on) (2.43)

The output of which passes through a sscnndL_y _ath filter (C) before

being added to a desired elg_al to for_ an error signal, which is fed

_ack to the edaptlve filter. A filtered x algorithm is used to a_s_c

this filter, so that

wi(n + I) = wi(n) - u e(n) r(n-i) (2.44)

The filtered reference slg_al, r(n) is formed by pameimg x(n) through

an estimate (_) of the true secondary path. By maklng this filter

different from C the effect of errors in the estimate of the error

_th transfer function can be investigated.

The filter _ is, howQver, only excited by x(n) at the reference

frequent/,_o. so if themodulumand pha_eof itstran.ferfunction
At this frequency arel

A J_o
c(e ) = MeJ_

the filtered reference signal must be

r(n) M co8 (_on + _) 42.45)

r(n - i) = M cos (Won + • - _oi)

HI2 [e j_°n e j(_ - _°i) + e-jW°n e -_(e - _°i) ]

(2.4e)
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In the u_ate term for the coefficient wi, this slgnal is multiplied

by e(n). If the Z transform of e(n) is E(Z), the Z transform of the

product e(n) r(n-i) is

H [e j(¢'_°i) E(z e -j_°)Z le(n) r(n-i)] = _

+ e-j(_-W°i) E(Z ejW°) ] (2.47)

NOW taking the Z transform of the u_ate equation, with Wi(z ) as the

Z transform of wi(n)_

z wi(z) = wi(z) - _ [ e_(® - _oi) _(za-_o)

+ e-_(¢ - w°i) E(z ejW°) ]

_Mu(z) [ej(@- _o i) E(ze-J_o):. wi(z) = -_-

+ e-j(_- _°l) E(ze j_°) ] (2.48)

where U(Z) = i/(z - i)

i me output of the filter, y(n), is formed from

I-i

y(n) = _ wi(n) x(n-i) 42.49)
i=o

where x(n-i) = cos (Won - _oi)

1
= _ (ej_°n e-j_°i + e-j_°n ej_°i) (2.50)

If we take the Z transform of each term in the sur_natlon for y(n), we

have
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¥(z) = _ _- wl(z e-j_°) e-_°°¢ + w¢(ze ju°) e j"°¢
i=o

c_ z-1 [ej( _ - _o:L)Y(z) = -4-_ fU(ze -j_°) e-j_°i
i=o -

E(z e-jz_°°) + e-j(_-_°i) E(z) ] + U(ze j_°) ejW°'t

[ej(¢-_°i) E(Z) + e"j(_ - _°i) E(z ej2_°) ] . 42.52)

I-i

:, Y(z) = -_ E (z) u(z e-]_°)e -j'_ + u(z e]u°) e j¢
i=o

+ [E(Z e-j_°) U(z e-j_°) ej(¢-2_°11 + E(Z ej2_°) U(z ej_°)

e-j(*- 2_°1) ] ] (2.53)

T_e equation in the second square brackets contains terms of the

form e _J2u°1 multlplled by a number of other terms w_ich do not

depend on i and can thus be taken outside the eu_atlon. Evaluating

the su_atlon of these exponential terms

I-I e±J2_oi - 1 - etj2_°I = e_J2Wo(I-Z) sln (_.I_

i=o
(2.s'_)

I£ the reference signsl la synchronously sampled and the number of

filter coefficients is egual to an Integar (X) mult_plled _y half the

number of snmp1es per cycle,

T_erefore _o = X_/I
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Sin (_o I) - Sin (k_)
l" _I_O _ SIH'(X_-TI_ = O (2.55)

consequently the second term in the square brackets in the eun_m_tion

above is identically zero. we are left with I identical terms in

E(Z) and sttbstituting for U(Z), we obtain

Y(Z) =- Ia-_-M E(Z) [ e-J_- +- eJ---_---_ ]4 z e-j_°- 1 zeJ_°-i

E[z-_Y(Z)= I aM [ z coS._(___-¢) -cos • 1 =G(Z)2

mm_

1 -2z cos (_) +z 2- (2.56)

This represents the transfer function of a linear, t1_e invarlant

system. The secondary signal may be eKpressed in the z domain as

s(z) = c(z) Y(Z) = C(z} G(Z) E(Z)

but E(z) = D(Z) + s(z)

so _=(z_= l
D(Z) i -- C(Z) G(Z) = H(Z) say. (2.57)

Where H(Z) is the transfer function between the error output and

desired Input, and the entire active controller acts as a linear time

invarlant system between these two signals.

Substituting for G(Z) above and letting

IaM

= 2 WS ob_aln

z - 2z cosJ___+_z2= _._:_(z) =
i - 2z cos (_o) + z2 + _ C(Z) (z cos (_o - ¢) - cos _)

(2.se)
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This result is important _ecause for a given error path, C(z), it

allows the behaviour of the system to De detsrntlned a_alytlcally.

Since no approximations have been made in the derivation of H(z), the

complete Dehavlour of the system must De described _ this

behaviour.

This equation allows the conditions on the accuracy of the estimated

secondary _th, C, to De deduced in the limit of slow a_aptlon. If

the adaptlon 18 assumed to De very sloW, i.e. _ - O, a reordsrlng of

the transfer functions W and C Decorums increanlngly valid. The block

diagram of the system now looks llke figure z.10a. If we redefine

the reference signal as q in this figure, Which is ale0 a mlnusoid at

_o, and let e(z) = _[z)/C(z) De the error In the estimate of the

erect path, the block diagram becomes that in figure 2.1oh. The

transfer function in the error path has completely disappeared from

this dlagram so we can set C(z) = 1 in the e_uaticn above, however

the error in the eetlmate of the secondary path remains as e Which

has a phase response of ¢ at eo, The transfer function of this

myeCem thus becomes

1,- 2z cos (_,_) + z 2_(z) =
i- 2z cos (_o) + z2 + _[m cos (_o- ¢)- _ cos 0)

1 - 2z cos (_) + z2
2

z - (2 cos (_o) - _ cos (_o - ¢))z + (1- _ cos _)

(2.s9)

This is a second order remurslve system Whose stabillty can De

investigated hy exa_nlng Whether the pole Positions a_e within the

unit circle. For small B, H(Z) will have conjugate Poles at a

distance of _ 1 - _ cos _ from the origin. Since all the terms in

are assumed ponltlvo, the distance of the pole from the unit circle

can only De greater than i if cos @ is negative, so the stability

condition must De;

COS ,_ _' 0 .'. 90 ° :" • > -90 ° 42.60)

An additional oondltion for stability [23, p 169 ] is that
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I 2 con (Uo) - # cos (_o- ¢) I < 2 (2.61)

since cos (_) > o and _ is _8sur_ed small, thin condition munt alno

be satiefled.

The time constant of convergence of an adaptlve canceller wlth a

nlnusoldal reference but no extra transfer function in th8 error path

le inversely proportlonal to u [20]. Assuming the adeptlon of the

filtereG x algorlthm is already slow, to account for the dynamic

properties of C, its convergence is further slowed if _ in not a good

•atch to C at _. The analysis above indicates that the tlr_e

constant of convergence in sluweG Gown by a factor of i/ cos @, where

¢ is the phase Gifference between C and C at _o. If we consiGer

only frequencies abou_ _o in the full block diagram of figure 2.1on,

the error signal has been passed through a filter (C), with a

magnitude response of approximately M at _o. The filtered reference
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signal r(n) is also proportional to M, by dsflnltlon. The

magnitude of the update term, a e(n) r(n-i) will thus he a factor of

M2 larger than if c had not been present. This poses problems if

multiple slnusoids are present in the reference signal since, in

general, the modulus of the response of the filter C at each of these

frequsncles will he very different. Since only a single value of the

convergence coefflclsnt can he used, which applies to all the

frequency components in the reference, thle must be chssen so the

system is stable for the frequency at which the response of C is

largest. This will considerably slow down the convergence of the

algorithm at frequencies where the response of C is s_all. Such

behaviour is analogous to that due to the slgenvalue spread of the

reference input discussed in Section 2.1.

2.5 EqUiValent transfer function of the simulations

'_ne slmulatlone reported in section 2.4 were of a synchronously

sampled system, which can he represented, using the results of

sections 2.5, as equlvalent transfer functions. In thls section we

compare the properties of these transfer functions with the hehaviour

oDserved in the simulations.

In the first simulation (corresponding to figures 2.5 and 2.6) above,

we ha_s

=_/2, c(z)--z-10 _(z) =z -2
0

Thus cos (_o) = o, $ = _, cos (_o - $) = o, _-- a, and the general

transfer function of equation 2.SB reduces to

i +z -2
H(Z)= -12 (2.62)

l+z--2+az

This remarkably simple transfer function has zeros at z = z J and

polos corresponding to the roots of the denomlnstor. This twelfth

order equation cannot he solved analytically, but has been solved

nu/_rically for varlous values of a, and the rssultlng poles are

plott_ in figure 2.11. For very small values of a, one p_ir of

3
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poles are almost coincident with the zeros at z = ± J, a_d the other

ten move rapidly away from the origin. For these small values of m,

the behaviour is dominated by the poles and zeros near i _ and the

transient response is that of a decaying exponential, as observed in

figure 2.6(a). AS s is increased the two pole pai_s on the imaginary

axis meet when u _ 0.07, which corresponds approximately to figure

2.s(b). These Pole pairs then break away from the imaginary axis and

move outwards with increasing a. The transient behaviour in this

region is dominated by these 4 Poles each conjugate pair of which

give a decaying slnusoldal response. These two decaying sinusolds

beat together giving the behaviour observed in figure 2.6(c). The

beat frequency gradually rises as _ increases, and distance _etween

the pairs of poles nearest ± J increases. For a a 0.3 these poles

migrate outside the unit circle and the system becomes unstable.

Similar transfer functions can be obtained for other secondary

delays, for examgle if the delay is one cycle of the reference

signal, i.e. 4 sample periods, the transfer function becomes

l+ z-2

H(z) = 1 - z-2 - G z-6 (2,63)

The trajectories of the 6 poles for this transfer function are shown

in figure 2.12. These show a similar behaviour to those above except

that only 4 poles move out from the origin, Apart from relnforci_g

the general interpretation given above, it is possible to solve for

the pole positions exactly in this case Dy using z2 as the variable

in the denominator and solving the resulting cubic equation. Such an

analysis shows tha_ the roots of z2 are real for _ < 4/27 but

_naginazy for values of a greater than this valun. This values of u

40.148) thus corresponds to the Point at which the poles on the

imaginary axis meet, which agrees with the trajectories of figure

2.12.
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3. I_APTIVE PZLTERING IN MULTICIIANI_'L S_zk_l_

3. i. FORMULATION OF THE PROBLEM

We will assume t_at the physical system we are trying to control, and

the transducers we are using, are linear. This assumption can he

relaxed somewhat in practice, but in important as a staz_ing point in

the discussion. The primary field (acoustic or vibrational) present

in the system without any active control is assumed to be correlated

with a_ observable reference signal and also is assumed stationary,

although again this assumption will De relaxe_ later on. This

primary field is actively controlled using M actuators (typically

loudspeakers or shakers) whose input is controlled so as to minimise

the time averaged sum of the squares of L error sensors (typlcally

microphones or accmlerometers). This objective for the active

control system is one which has been arrived at as a practical

solution to the criterion of the mlnimlsatlon of acoustic _tentlal

energy in an enclosure [24]. The placing of the actuators and error

sensors is not discussed in this report, although it is noted that

under certain conditions surprisingly few transducers need be used to

achieve s_bstantlal reductions in total energy [24].

An equivalent bloc_ diagram Of the active control system may De drawn

if it £s assun_d that the contributions from the primary fleld to the

OUtputs free the error sensors are derlved from the reference signal.

This assumption does not restrict the class of system being modelled,

although the vector of transfer functions relating the reference

signal to the error sensors (_A) has no obvious physical

interpretation. The complete block diagram is shown in figure 3.1,

where W represents the vector of M adaptive filters used to drive the

secondary sources.

The signals described in the figure are entirely electrical, The

electrical outputs from the error sensors and input to the secondary

sources are the only signals used by the control system. Noting the

assumption of llnearlty in the transducers as well as the physical

system to De controlled, allows the use of the principle of

superpositlon to derive an expression for the outputs of the error

sensors. NO separate consideration need I_ made of the interaction

effects Detween the sources and sensors and the physical system.

Loading for example does not need to enter the discussion.
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3.2. A MULTICV_%NNEL STOCHASTIC GRADIENT ALGORITDD_

Let the sampled output of the Rth error sensor I_ el(n), which is

equal to the sum of the primary desired signal from this sensor,

dl(n), and the output due to each of the actuators. Let the sampled

input to the ruth actuator he sin(n), and the transfer function between

this input and the output of the Ith sensor he modelled as a Jth

order FIR filter, whose Jth coefficient is c£mj, so that;

M J-i

el(n) = dl(n) + E _ cjm j era(n-J) (3.1)

m=l J=O

It is assumed that there are L sensors and M actuators, and that

L ) M. Let the total error, E, he defined am;

L

z = _ e_ 2 (n) (3.:')
J_=l

where the bar indicates that a time average has heen taken, zf the

reference signal, x(n), is at least partly correlatad with each

d£(n), 2t is possible to reducs E by driving the actuators with aN

FIR filtered version of the reference slgnal;

I-i

era(n) = _ wmi x(n-i) (3._)
i=o

Where wm£ is t_e Ith coefficient of the filter driving the mth

actuator.

The total error will he quadratic function of each of these filter

coefflolents, and the optimum set of filter coefficients required to

minimise E may be evaluated adaptively using gradient descent

_thods. The gradient of the total error with respect to one

coefficient is,

L _e (n)
aE = 2 --Q--- (3.4)
_._Im"_ Z ej(n) _"_ni
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Diffsrentlatlng equation (3,1) using equation (3.3) gives ".

J-i
aej(n)

= - T' oJImJ x(n-i-J) (:'.5)
j--o

•hiB sequence is the same as the one _nlch WOuld be obtained at the

Jth BSeSOE if the reference signs1 delayed by i samples were applied

to the ruth actuator. Let this be equal to rRm(n-£).

If esch coefficient is now odJusted at every sample time by an amount

propertional to the negative instantaneous value of the gradient, a

modifsd form of the wsll known _ algorithm i8 produced;

L

Wmi(n+l) = Wmi(n) - a _-, e_(n) rQm(n-i) (3.6)

Q=I

where o is the convergence coefficient.

For a single input, elngle output system (L=M=I), this corresponds

exactly to the "filtered x LMS- algorithm discussed above.

A phyBical interpretation of the present algorithm can be obtained by

conslderlng the equivalent block diagram of the system; the block

dlagEa_ of n simplified system is shoWn in figure 3.2a, with a single

actuator producing an output y(n), which effects the outputs of two

sensors, via the transfer function C1 and C2.

The two error nlgnnl sl(n ) and e2(n ) _/s the differences between these

outputs and the deslrsG slgnals dl(n ) and d2(n ). The output, y(n), Is

prodused hy driving the FIR filter w with the reference signal x(n). If

the filter D# in llnsar a_d ti_ invariant, this blsck diagram is equivalent

to the one in figure 3.2b, in which the signal rl(n) and r2(n ) are prsduced

passing x(n) through c 1 and c 2 respectively.

If the n'th coefficient of the filter w were to be ugdated with the

convsntlonal LMS algorithm in either the upper or lower branches of figure

3.2b, the update terms would be of the form 61(n ) rl(n-i ) or s2(n ) r2(n-2 )

respectively. If dl(n) and d2(n ) were Perfectly correlated with x(n)
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FIG. 3.2 BLOCK DIAGRAM OF AN ACTIVE CONTROL SYSTEM WITH ONE SECONDARY SOURCE

AND TWO ERROR SENSORS. a} DIRECT.

AND b) REARRANGED ASSUMING SLOW CONVERGENCE,



either el(n) or e2(n) could be driven to zero by the action of the LMS

algorithm operating in isolation on either the upper or lower branches.

However What is required here is the minimisation of the sum of the mean

square values of both errors, Which is the etea_y state requires that the

gradient of the total error with respect to each coefficient is zero.

Updating the coefficients with the sum of the two update terms above

achives this objective since the average value of the sum of the individual

instantaneous gradients is equal to the sum of the average of these

gradients.

3.3. COMPUTER SIMULATIONS OF THE ALGORIT_4

A computer program has been written Which simulates an active con£rol

system with four error sensors and two secondary actuators. A block

diagram of the simulated system is given in figure 3.3. The program

aSsUmes a single frequency eKcit_ion which is synchronously sampled at

e_ctly four samples per cycle, as above. If the primary field is assumed

to _e stationary its contribution to each of the four error sensors may

also _0 derived via four two-point filters without loss of generality. I_

order to began to model the dynamic response of the system realistically,

both an overall delay, and some form of 'reverberant' behaviour must be

included in the model of the response of the £'th error sensor to the

OUtput o_ the m*th secondary source. This has been incorperated into the

_el hy simulating the difference equation between the m'th source and the

Jth sensor as

el(n) = a_m sm(n - p£m ) + b£m ej(n - qlm ) (3.7)

The transfer function of which lu

El( z ) Z-Pin z-qjm ( 3.8 )
am(Z) = c_=(z) = aim / 1- h_m

'FNie model has an overall delay of PRm samples, and the reeureive term

gives a first approximation to reverberant behaviour by causing past values

of the error signal to recur in the output after glm samples. The values

of elm, Plm, him and qlm for each of the eight filters are indicated An

figure 3.3. They were chosen at random to _e in the ranges 1 t 0.5, 14

4, 0.55 ± O.24 and 6.5 ± 1.5 respectively. The average delay between a

secondary source and error sensor is thus 14 samples or 3_z periods of the

reference excitation.
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The individual differences in the delays were introduced to elmulate the

difference in propagation time _)etween variously positioned sources a_d

sensors in a real system. T_e values chosen in the recursive terms of the

difference equation nmane that the average time constant of the decay of

their transient responses is a_ut i0 samples or 21e periods of the

excitation. The desired signals were generated by passing x(n) through

four two point FIR filters. The coefficients of these filters were of

oiler i, and the total error in the absence of any contribution from the

actuators had a mean square value of 3.23. In order to generate the eight

filtered reference sequences (rlm(n)), x(n) was passed through eight two

poiIlt FIR filters adjusted to have exactly the same _gnituds and phase

responses at the reference frequency as each Of the filters defined hy

equation (3.8). Two adaptive FIR filters, with coefficients initially set

to zero, were used to drive the two actuator outguts from the reference

siqnal, and the coefficients of these filters were updated every sample

using equation (3.6).

The way the total error (E) changed over 256 samples of the slmulation,

i wlth a convergence coefficient (a) of 0.01, is presented in figure 3.4.

The e_ of the squares of all four error signals was smoothed using s two

point moving average to obtain E. The value of this total error after 255
i

samples is within 3_ o_ its values after several thousand samples. The

i trajectories of both coefficients of both a_aptive filters over the s_m8

period aye shown in flgurs 3.5.

A value of s of O.01 gives approximately the fastest convergence time,

even though some overshoot is present. If s is reduced to 0.005 this

overshoot disappears and the algorithm converges monotonically, but

slightly more slowly. The "overdamped" and undsrdampod.' behaviour obserVed

for the single chamnel alqorltbm with a pure delay (figure 2.6) is also

observed in this multlehannel case. This is illustrated in figure 3.6.

The simulated system was unstable for values of u greater than about

0.05.

3.4. ;_APTION TIME OF THE ALGORITHM

one assumptlon implicitly made in the derivation of the algorithm was that

the properties of the adaptive filters were vazylng slowly in comparison
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with the timescale of the response of the system to be controlled. When

the algorithm is _nplemented, however, the time constant of convergence,

measured from the initial slo[ke of figure 3.4. to be about i0 periods of

the reference signal, is of the same order of mngniCude a_ _th the overall

delays and the reverberant timescalss used in the simulation. This

reinforces the comment of Widrow and stearns [6] that the filtered x LMS

algorithm converges considerably faster than would apparently be expected,

and e)ctends t11is observation to the multichannel case. Another finding in

the multic1_annel case is that there appears to be no more interference

between the convergence of the coefficients of multiple filters than

between the coefficients of a single filter, despite the fact that the

update tetras for each filter are coupled.

A further demonstration of the sdaptlon time of the algorithm is afforded

if the magnitude of the primary excitation at each of the error sensors is

perlcdically modulated. This would, for example, be a simple represenatioe

Of two primary sources, e.g. propellers, operating at slightly different

frequencies. It should be emphasised that the reference signals fed to the

adaptive filters still has a constant amplitude.

The total error wlth and without the active control system in operation

(using a convergence coefficient, _, of 0.Ol) is shown in fiqare 3.7. The

period of the _ulation in this simulation was 200 samples mr 50 cycles at

the excitation frequency. It can be seen that after a transient during the

initial 100 samples or so, the adaptive filters are able to closely follow

the changes in the primary excitation. This is confirmed by the

trajectories of the coefficients over the same Period which are pimttod in

figure 3.8.

3,5, AL_3ORI%_ ROBUsTNEss

The algorithm has also been fousd to _e very robust to errors in the

generation of each of the filtered reference signals, r_m(n), rn

_z_icular the algorithm can be made stable even with nearly 90° phase

error in these signals, although the convergence _rameter must be reduced

someWhat to maintain stability in this case. This phase condition is

intuitively reasonable in the case of slow convergence, since it implies

that the average value of the individual terms in each u_4ate equatios

(ea(n) r_m(n-i)) must at least be of the correct sign for the error to be
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reduced during adaption and thus retain stability. The robustness of the

algorithm le aluo den_nutrated by other simulations Which show that the

convergence is largely unaffected by the introduction of either

considerable uncerrelated observation noise or _oderate non llnearlty in

the transfer functions relating the sensor outputs tu the actuator inputs.

3.6. THE S_,ADY STATE SOLUTION

Although the algorlthm described above obviously achieves uo_ reduction in

the total mean square error, it is important to establluh Whether this is

the optimal reduction Which ca_ be achieved with a given arraNge_nt of

sources and sensors. In the analysis presented below, the elements of all

vectors and matrices are complex. The real and imaginary parts correspond

to either the inphase end quadrature components of signals, or the reel and

i_aglnary ports of the controller transfer function, beth evaluated at the

single frequency of excitation. Since the uamgle rate has been chosen to

be exactly four ti_es the excitation frequency, the coefflclentu of the two

point FIR filters used in the controller are the same as the real and the

negative of the im_glnnry parts of the contrOllers transfer function.

Using no_nclature similar to neat used in section 3.1s let

E = [E1 E2 E3 ... EL ]T (3.9)

be the vector of complex error slgnalu at _o.

_Y 6YZ Y2 Y3 ... y_ ]T (_.10)

be the vector of complex outputs fro_ the filters,

A = [A1 A2 A3 .,. AL] T (3.11)

be the vector of complex transfer functions between the reference signal

and the error seesoru,

W = [W_W2 W3 Wm]T (3,12)
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be the vector of complex transfer functions of the filters in the

controller, and

r I
_C = | CIi c12 ... |

l C21 C22 J (3.13)• CLM

be the matrix of complex transfer functions between each secondary Bource

and eech error microphone.

The matrix equivalent of equation 3.1 in the frequency domain thus becor_BB

_E = _A X+_C X (3.14)

where _ is the complex scalar reference slgnal. But Y = W X, so

= LA + c W ] x (3.15)

The S_ of the squares of the errors may be written in Her_Itian quadratic

fozm as

L

£ fzjl2 = IxlZ
J=l

This may be minimised by setting W toz

The error vector corresponding to this controller is thus

_Eopt = [ A + _C _wopt] X (3.18)

and the optimum sum of error squared is

E H [A uA - AHC [C"C] -1 CHA ] IXI 2 (3.19)
-opt -Eopt = ........
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Table 3,1 showing the set of filter coefficients and total _ean square
error calculated using matrix methods and achieved after
various numbers of cycles in the o_latlon

Total Mean

Condition W1o W_ W_z W_3 Square Error

Initial 0 0 0 0 3.235

Optimum -0.022 0.657 -0.153 -0.457 0,887

After 200 cycles
of simulation -0.179 0.599 -o.212 -0.536 0.908
with a = 0.005

After 3000 cycles
of simulation -o.161 0.650 -0.194 -0.524 0.913
with a : 0.005

The elements of A are readily identifiable for the simulation performed

above, from the block diagram of figure 3.3. The elements of the matrix c

must he Obtained from the transfer functions, C_m(z), listed in this

figure by letting z = ejwowhere wo = _/2, so Z -- J.

Having identified the elements of _Aand C, the expressions for _Wopt and

_Eopt_Eopt were evaluated. The resulting set of optimal filter

coefficients and the minimum mean square error are shown in table 5.1.

Also shown in this table are the sets of filter coefficients and final

total error observed in the simulations above after various numbers of

cycles,

The first observatioe which can _e made from this table is that the total

error in the simulations never gets down to its minimum possible value,

although it is within 2 or 3% of this value and so may be considered as

achieving it for most practical purposes. The second point to note is that

although the algorithm appeared to have reached a steady state in the

simulatlons after several hundred cycles (figure 3.4. ), it is in fact very

slowly changing after this and appears to reach a completely ..stable..state

only after several thousand cycles. If the simulation is allowed to run

for a further thousand cycles no change in the coefficients is observed.

The total error after 3,000 cycles is in fact slightly greater thee after

200 cycles. There is no obvious reason for this and it is probably due to

finite precision effects im the computer. Of more direct interest is to

observe the change in the filter coefficients from sample to sample after

3,000 cycles. Because none of the error signals are ever driven to zero

the individual terms in the update equation (equation 3.5) are finite and
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proportional to the squares of elnusoidal quantities with frequency 1/4. "

Although the average of the sum of these terms are zero in the steady

state, the fact that an instantaneous estimate of the gradient is being

taken means that the update term, although small, never completely

disappears. Tn fact, the algorithm reaches an equilibrium in _ich the

coefficients oscillate, about two stable sets of values, with a perlod of

half a cycle. This effect is s_milar to the mleadJust_ent errors discussed

by Widrow and stearns [6], which gives rise to a minimum error in norm_l

adaptive filters which is slightly above the optimum.

3.7, NDDIFICATIONS OF THE ALGORITHM

3°?.i, USE OF ANORE _ COST FUNCTION

A_ error function or 'cost' function WhiCh is widely used in the field Of

optimal control [7] involves both mean square error terms and tez_s

proportlonnl to the mean square effort. For example if ym(n) is the output

of the _'th filter, one cost f_nctloe wtlich could be used is_

L -_- M 2
J_= _ P_ei+ E %Y_ (3.20)

i=l _=i

_lere Pi and qm are the wslghtlng8 on the individual errors (e)) and

'efforts' (y_) respectively. The gradient of this cost function with

respect to the i'th coefficient of the m'th filter is

_mi = 2 _ pj el(n) rim(n-i) + _nYm(n) x(n-i) (3.Zl)
l=l

and the stochastic gradient algorlth_ for the adaptive filter becowea

wmi(n+l) = wmi(n) - a qmYm(n) x(n-i) + _ pie_(n) r_m(n-i)

I=i

(3.42)
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Note that the use of this cost function only adds one, easily calculated,

term to the update equation £0r each coefficient.

The computer simulation of the multl-channel active control system

described in section 3.3 was altered to incorporate a simplified form of

this cost functionz The values of all the error weighting coefficient, p_,

were set equal (at unlt_,) and the weighting function for beth of the

outputs (ql and q2) were also set equal, at some variable value. If ql =

q2 = 0 the algorithm behaved as a section 3.3, as expected. As ql and q2

were increased, the transient time of the algorithm did not appear to

change, but the steady solution, after 600 cycles of the simulation, began

to alter. For example, wlth ql = q2 = 10 in the simulation the flnal mean

square error was 1.7 (compared to 0.93 when ql = q2 = 0, and 3.2 before

adaptlon) and the final mean square value of the filter outputs was 0.127

(compared to 0.657 when ql = q2 = O). Consequently the algorlthm alloWs

much smeller secondary strengtlm to be used While still achieving some

reductions in the error output.

COst functloes such as these have already been discussed, for example, in

the higher har_onlc control of helicopter vibration [ii]. Their use would

appear to be beneficial Whenever there is a poseibillty of very large

source strengths being necessary to achieve very small reductions st the

error sensors, leading either to nonlinear behaviour or to increases in the

total field away from the error sensors.

It is interesting to consider the scalar case of the LMS algorithm with

this modlfled cost function, which may be wrlten in vector form as

w - =Is(n) _n + q yen) xn] (3.z3)_n+1 -n

s_stitutlng y(n) = XT W gives-n-n

In the case Where wo is _/2 and two coefficient filters are being

! used, the 2 x 2 _trlx X _ wlll, on average, be equal to 1/2

multiplied by the identity matrix (equation 2.36). The average behaviour
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of the above algorlthm is thus described by

_n+l = Y _ n - a e(n) _n (3.25)

Where 7 = 1 - aq/2 < 1.

This _mplies that in the absence of any update term the value of the filter

coefficients would gradually decay away. This expression is e3mCtly the

same as that described by Widrow and Stearns [6, p 377] as the 'lesk_ LMS,

algorithm.

3.7.2. USE OF A WEIGffI_D LEAST SQUARES CRITERION

It is sometimes desirable not to minimise the sum of the mean square values

of a number of error signals, but to m_nlmiss the value of the largest one,

the 'minimax' criterion. In general this minimisation problem is very

nonlinear and thus difficult to solve analytically. Sowever it hme been

euggeste_ Dy Burrows nnd Shahinkaya [25] that a modified form of a least

_10an square algorithm could be used a_ an approximation to this in w_Ich

the welghtlngs on the individual errors are varied depending on their mean

square value. Burrows and Shabinkaya used an iteratlve matrix invsrslon

formulation to solve thelr equations, and adjust their error weighting

values after each iteration. They found that the algorithm converge_ after

two or three iterations.

A similar approach can be taken in the e.G. algorithm desori_e_ above if

the effort weighting functions (qm) are set equal to Zero, and t_e error

Weighting functions are made equal to the averaged squared value of the

rslevent error signall

2

Pl = s_ (3.26)

•simulation has been performed in which the mean square errors were

calculated using two point moving average filtersl

[e_ (n-l) + 2 (n)]/2 (3.27)I = eR
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and used to modify each 9_, every sample, according to the equatisn above.

The final results of this simulation were achieved after about 120 cycles

and it was £ound that the value of the largest error signal after sdaptlon

was 0.47, co_0ared tsa value of 0.58 with ell values of q_ equal to unity.

The mean squale value of all the errors, however, increased to 1.08, from a

value of o.908 with all values of q_ equal to unity.

In this s_J_ulatlon the maximum mean square error has been reduced by about

30_ at the expense of an increase in the total mean square error of about

17t. It should, however, _e noted that after convergence the other error

signals hays a mean square value well below the value of 0.47 quoted above.

COnsequently this is not a true _inimax algorithm, which would drlvs the

mean square values of all the errors to the same (minimum) value.

If the expression for pj in equation 3,26 is substituted into the original

error critsrlon of equation 3.20 with ell qm : o, it can be seen thnt the

error criterion is the L% norm of the error. This in contrast to the L 2

nor_ used in the normal S.G. algorithm e_ove and the L_ norm which must be

used in a true minimax criterion. In fact higher order norms can be

_ini_ised, by taking p_ = (e_)zk, for example which would eventually

minimise L2k+2. A practical problem asssciated with such algorithms _s the

very slow convergence rate. This is due to the large difference in

r_gnltudes of the individual terms of the coefficiest update equatlsn, a

e_ilar problem to that dlscussed at the end of section 2.5
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