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1. INTRODUCTION

There has recently been a aurge of interest in ‘'active' methods of
noiea and vibration control, in which additional gecondary sources
are used to cancel the sound or vibration from the original 'primary’
source. This interast has been spurred by recent developments in
micreprocessor technology, which make the economic implementation of
such techniques increasingly feasible,

Although the most fupdamental work in this area is prcbably that
concerned with the physics of the interaction between the primary and
secondary sources, there are also important questions to be answered
regarding the methede by which the objectives of active control are
achieved, Active control) seystems can normally only be formulated if
it is amsumed that superposition applies, i.e, that the aystem ia
linear, and that the properties of the primary field are constant
i,e. the excitation is stationary. In many of the situations in
which active noise control is applied, however, the properties of the
sound or vibration field are mildly nonlinear and mildly
nongtatiohary. An active control syatem must be adaptive in order to
cope with these problems and consequently the use of adaptive methoda
in active control ie widespread, The pimpleat form of such an
adaptive system is cne in which the 'besat estimate' of a solution
obtained assuming linearity and statlonarity 1s tried, anda after
waiting for any transients to die away, the residual field is
examined and the solution is adjusted to cancel thie residue, Such
‘block adaptiva’ schemes have heen applied to the active ¢ontrol of
random nolee in ducts [1]1 and the multichannel control of harmonic

vibration [2].

In the field of signal procesaing there is a class of adaptive aystem
in which the properties of a digital filter are adiusted to minimise
a aingle, electrical, error =sighal on a timescale which is much
amallier than that usedq in the algorithms described above. There has
been a considerablsa literature build up over the past two decades
about such methods hecause of theilr importance in the fields of
telecomnunications, beamforming and bio-medical electronics.  The
continuing interest is also demonstrated by the fact that there have
been at least four text Dbooks published in the last two years,
specifically on the subject of adaptive filtering {3,4,5.6]. A very
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similar technique has also been used over a gimilar peried of time in
control theory [13)]. Unfortunately the similarity between the two
traditions is not readily apparent from an examination of the two
bodies of literature.

The application of thia knowledge to the problem of active control is
not, however, a straightforward matter., For example the use of an
adaptive f£ilter to drive a loudapeaker in an active noise control
system which creatas a 'zone of gllence' in a room containing a noisy
machine is, rather cryptically, left as an exercise for the reader in
one recent book [xref, 6, page 300].

It is the purpcee of this report to apply the philosophy adopted in
the derivation of one widely used method for adaptive filter design,
to the problem of the multidimensional active control of pericdic
excitations in physical systems.

The most general formulation of a multichannel active control syastem
(8] involves the use of an array of sensors to detect the
contributions from a number of primary sources before feeding them to
an array of filters feeding the secondary senscrs. 'The use aof such
datection sensors introduces the posgibility of fesdback paths from
the secondary sources to these sensors, Thus the system becomes
closed loop, even in the steady state, making the problem of adaptive
adjustment difficult at best and, at worst, making the system
ungtable,

Under certain circumstances these feedback paths are eliminated or at
least greatly reduced. A very important example of such a
gimplification occurs when the primary excitation is periodic and has
a known fundamental frequency. Under these conditions a ‘'refarence
Bignal' can be ganerated with an identical fundamental £requency and
containing all the harmonic components present in the primary field,
Thig signal can now be used to drive the secondary sources, via a set
of filters, thus Aispenaing with the detection sensors.

There are many important noise and wvibration problems which are
amenable to active control and also are nearly periodic. Faor
axample, the active contrel of sound and vibration from reciprocating

or rotating machinery falls into this category. T™wo particular
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problems which are currently being widely investigated are the active
control of propeller induced cahin neise [9]) and the ‘higher
harmonic' control of halicopter vibration (10, 11]., In practice both
of these problems have been formulated in terms of the minimisation
of the sum of the aquared outputs from a number of error 8ensors
{microphones or accelerometers) by adjusting the inputs to a nhumber
of sources (loudspeakers or shakers)., ‘Mhese applications are thus
examples of a more gensral class of multichannel or multivariate
active control system with a primary field of known form.

This report presents the results of a preliminary investigation into
the application of adaptive £iltering to such multichannel active
control systema, A raview of the technigues used for single chanhel
cancellation and their application to active control are €£irat
prepented in Section 2. Section 3 introduces an algorithm which has
bean daveloped to extend such methods into multichannel applications,
and discusses some of its properties. It is the authors' opinion
that the careful application of adaptive filtering concepta to the
problems of active control can be very fruitful., There aras, however,
a numbar of questions which remain unresolved and some of these form
the basis of current work at ISVR,



2, ADAPTIVE PILTERING TN SINGLE CHANNEL SYSTEMS

2,1, ADAPTIVE NOISE CONTROL

Rdaptive fioise cancellation is the name used for a clasa of
electrical adaptive systems typified by that shown in figure 2,1,
It is assumed that a ‘'reference' s8ignal is available which is
perfectly correlated with the noise component of <the ‘primary’
signal, This is passed throcugh a filter and subtracted from the
primary signal to form the ‘error® signal. The canceller is adapted
8o that the filter cutput is as close a match to the nolse component
in the primary signal ap can be cbtained. The consedquence of this is
that the ‘'error' signal is a better estimate of the true ‘signal’,
from the 'Signal Source'. Ancther result of thisf behaviour is that
the mean sgquare value of the error signal is minimised and this i=s
the kay to the operation of the canceller,

+ Primary . Error
signai N Pany —
model + = signal d{n) AZ/ signal
_ eln}
P Filter
Linear | output
process yin)
t !
noise - Linear reference Adaptive
model . process signal x{n)| filter
Figure 2,1. Block dtagram iLllustrating a typical arrangement for elactrical

adaptive noise cancellation.



Asauma that the syatem is sampled and that the filter is transversal

(FIR), then:

I-1
y{n) = T o x(n — 1) (2.1)

i=0

whera wi 1s the 1'th coefficlent of the filter. Thus,

I-1
e{n) = 4d(n) - T wi x(n - 1) {2,2)

i=0

Since e{n) is a linear function of each filter coefficient, the mean
square value of e(n), vhich is sgqual to the total error E, muat be a
quadratic function of each wy. The mean sguare value of e(n) can
never he negative, 80 the I + 1 dimensional error surface formed by
plotting the total error against each of the I filter coefficients
must have a unique global minimum. Due to the quadratic nature of
this error surface simple gradient descent methods can be used to
adapt the coefficients in order to minimise the total error.

one puch technique is the method of steepest descent where each
coefficient is adjusted at each iteration by an amount proportional
to the negative value of the gradient of the total error with respect

to that coefficlent, i.e.:

LU (2.3)

wilk+l) = wi(k) -~ g awy

for the k'th iteration.

since E = e(n)2, where the bar indicates a time average,

s _ 26 _ 3aln)
By = By - 2 e(n) Fiviy (2.4)

but from equatcion 2,2.

ge(n) . o on-
G = X (n—1) (2.5)

The ateepest deacent algorithm thus becomes



wi(k+l) = wi(k) + 2u e(n) x(n-1i) {2.6)

If the ingtantaneous gradient ia used to update the coefficienta and
all the coefficients are adjusted at every sample point then the
algorithm becomes:

wi(ntl) = wi{h) + o e{n) x(n-1) (2.7}

where o = 2u., This i® known ag the LMS algorithm in the eignal
processing literature and is attributed to Widrow and Hoff [12). It
is aleo a special class of Stochastic gradient algorithm discuseed in
the contrel literature {13]. Although the detailed origins of puch
stochastic gradient algorithms appear rather obscure, thay have
ohviously grown out of methods of numerical analysie used since the

15th Century.

Thia stochastic gradient (or SG) algorithm has been found to cohverge
under a wide variety cof conditions and 18 very straightforward to
program for real time digital signal processing. Consequently it has
become wvery popular in a wide variety of applications [6]. The
algorithm has been widely analysed in terms of i1its stability,
convergence time, and misadjustment error (due to the ccefficients
continuously being changed even when the hottom of the error surface
has bean reached), Mogt theorstical analysis make an implicit
asgumption that the filter is converging slowly. This 1m often
expressed in the statement that the instantaneous wvaluea of the
coefficients ara independent of the current input signal.
Theoretical treatments which deal with the full dynamic behaviour of
the algorithm have only recently begun to emerge [5 {page 48) 14]. A
brief discuasion of the most wideapread current theoretical treatment
is, however, helpful in uhderstanding some of the limitations of Buch

algorithma,

The discussion below 1is based oh that presented by Widrow in 1971
[15] and ueed in the book by Widrow and Stearns [6]. The analysis
is baged on expressing the update aquation 2.7 in matrix form for all

coafficients,



T
Wp = [wocn) wi{n) wa(n) ... wr.i{n) ]

T
X, = [x(n) ®(n-1) x(n=2) ... x(n-I+1)]

Equation 2.7 can now be expressed as

f& =E’E+u8(n)xn (2.8)

the output of the f£ilter can also be convenhienhtly expressed as

y(n) = X§ Wy, 80 e(n) = d(n) - XpT Wy (2.9)
Thus,
Wptl = W 4 a(d(n) X — Xp X§ Wp) (2.10)

The analysis at this point is completely general but to make the
algebra tractable, the assumptiona ©f a gtationary random input and
of ‘slow' adaptionh are used. The statlonarity of the input ia first
used to define an estimation value of all quantities for a large
numbar of input sequences generated by the same stochaatic process.
Secondly we assume that the inatantaneous value of the coefficients
exprassed in the ‘'weight wvector’ ?.E are uncorralated with the current

set of inputs in X;. This second agsumption is obviously dubious for

fast adaption rates [14] but for 'slow' adaption it does not appear
unreasonable, and doeg lead to a relatively straightforward average

update equation. The asumption allows expectation values of Xp an

and Wp to be evaluated separately, and so the average behawviour of
the coefficients, over an ensemble of inputs, can be expressed as:

Wpei = Wp + o (P — R Wp) (2.11)

where P = E(A(n) Xp) and R = B(Xp XpT)



i.e, P is the vector of croas correlations and R is the matrix of

input autocorrelations, E is the expectation opsrator.
Thea term in brackets in equation 2,11 correspends to the average
gradient, and by setting this to zero for all coefficients, we obtaln

the optimum, or Wiener, eet of coefficients:

Wopt = Rlp (2.12)

By expressing F in terms of R and Wopt using thie expression, and

dafining

Yn = ¥n - Wopt (2.13)

as the vector of coefficient misadjustment,one obtains the equation

Vnt1 =Vn-aRVy = [I~aR]Vp (2.14)

Thus,by induction,

Vn = [I~aR1"v, (2.15)
The cofiVergence of the &dlgorithm indicated by the vector Yy tending

to zero as n hecomes large and so is dependent on the values of R.
This dependence can be made clearer if the misadjustment vector is

transformed from V to V', where:

v =gty ., s ve gy (2.16)

and g is the matrix of normalised eigenvectors of R, with the

property that g°1 9 = I,

This tranaformation eliminates the croes-coupling between the acticns
of the various filter coefficients due to the off-diagonal termsa of R
in equation 2,15, Thia can be demonstrated by writing

-t (2.17)

t
1
=]
1=
o



where A is a diagonal matrix containing the eigenvalues of R,

By using these expressions for V and F (equations 2,16 and 2,17) in
equation 2,14 we obtain:

1]
Yﬂil = !E —aAYE (2,18}

The second term on the R.H.S. of the equation represents (- a}
multiplied by the gradient of the error with respect to V,'. Since A
only haa diagonal terms, it is clear that the gradient of the error
with respect to each coefficient of \_.Fn' can only be depenent on that

value, The set of coefficients in V' must thus describe the
principal axes of the error surface. Rewriting equation 2.18 ag

L)
Vnir = (I- &) V! (2.19)

the time history of the ith coefficient of V;,. Vi(n) gay, cah now be

written as a scalar equation,
Vi (n+l) = (1 - arg) Vi(n) (2.20)

aince equation 2.19 describes a eget of independent difference
equations, Ay is thus the ith eigenvalus of R,

Thiea set of equations has been used to describe both the stability,
and the speed of convergence of the algorithm. Equation 2,20
describeg a firat order recursion whose transieht response is a
single aeXxponential. In order for the algorithm to pe stable the
magnitude of V4'{n+l) must be less than that of Vy'(n) thua

11 —x A4l ¢« 1 (2.21)
. 2
N1l - =1 or °‘°“X1 (2.22)

Since each A3 is real and positive, fThis condition will be most
stringent for the largest eigenvalue, Apay. which will determine the
largest value of a which can be uped while keeping the algorithm
stable, i.e.

a<? (2.23)

4,



However, Amay 18 less than oOr equal to the trace of the
autocorrelation matrix, which is approximately equal to the mean
squared value of the reference pignal multiplied by the order of the
£ilter (I). 5o

—

Max ¢ I x% {2.24)

and a condition for atability which is more restrictive than 2.23 but
more easily applied is that

0¢as —Ea (2.25)
I x*

The time constant of convergence of Vi(n), defined as the number of

samplas taken for it to fall by %, may be determined for equation

2.20 ae

1
T4 = M (L= ar) = Ex; if @ A << 1 (2.26)

The equation which takes longest to converge, i.e. has the largadt
time constant, Tmpay, Will be that containing the smallest values of

M. Min 82Y,

~ 1 (2.27)

This term will generally dominate the convergence of the filter, so
wo let Tpayx = T, an estimate of the overall time constant of
convergence, To obtain the smalleat value of this overall time
constant we let o take its largest wvalue conhsistent with stability
given by equation 2,23, to obtain:

r» Mmax (2.20)

2 Muin

Thig 18 a well Xnown result and is widely quoted as belng tha major
drawback of the SG algorithm when applied to signals with a large
‘eigenvalue spread’. A practical estimate of the ratio of the

10,
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maximum to minimum eigenvalue (=zometimes called the condition number
of the matrix [16] ) can be obtained by using the fact that thig ratio
is always less than or equal to the square of the modulus of the
largeat spectral component of the reference pignal divided by the
aquare of the modulus of ite smallest spectral component [16]. Thua
the eigenvalue apread is related to the dynamic rahge of the spectrum
of the reference signal,

One area i1in which adaptive £ilters are widely used is in
communications channele. The signals in such nystems are often
gpeech waveforms, whose spectrum has a large dynamic range. he
performance of standard SG algorithmeg in thia application has thua
been disappointing bhecausse of the large eigenvalue spread in the
signals, This has prompted the search for modified algorithms which
avoid this convergence time problem, A gocd review of one such
method is given in [16), in which the input signal is transformed
baefore being filtared in an attempt to ensure that the adaptive
coafficients used on the tranaformed data correspond to the principal
axis of the error surface. Although the transformation which
optionally achieves this objectiva 18 rather obscure (the
Karlunen-Loeve tranaformation), it ia shown that the Discrete Fourier
Transformation has a nearly-optimal performance. Thiz further
encourages an interpretation of the frequency domain as being a
useful way of viewing the aigenvaluea which are, after all, the
strengths of the different orthogonal components in the reference
pignal, ‘e frequency domain LMS algorithm was originally introduced
{17] an anh efficient implementation of the time domain IMS algorithm.
It has been found, howvever, that by choouwing the convergence
coefficient in each frequency bin to be inversely proportional to the
signal power in that bin, considerable improvements in adaption time
ara achieved. In general terms, this corresponda to being able to
choofe o separately for each of the decoupled recursive equationa
2.20 ensuring that each of the 'modes' decays at the same rate.

Othexr approaches to adaptive filtering which are potentially faster
than the time domain ILMS algorithm are those using lattice structures
{ref 6, p 164] and those using recursive leagt sguares or fast Kalman
algorithms [18].

11.
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2.2, ADAPTIVE CANCELLATION OF PERIODIC SIGNALS

If the reference signal in an adaptive canceller is made up of a
number of sinusolds, considerable simplifications can occur in both
the implementation and analysis of the algorithm. The latter was
originaly inveatigated by Glover [19] who showed that the behaviour
of such an adaptive canceller could be approximated by a linear time
invariant filter. The approximations become exact if the sinusoids
in the reference #ignal have an exactly integer number of samples per
cycle, in other words they are synchronously sampled, and the filter
length containse an integer number of cycles of the reference Bighal,
Under this condition the behaviour of the aystem, from the primary
gignal to the error signal, can be desacribed exactly by that of a
linear time invariant notch filter, the bandwidth of which is
determined by the convergence coefficient,

only two filter coefficients are needed for each sinuscid in the
raference aignal, which can lead to consoiderable computational

pavings,

To illustrate these points a simple simulation of an adaptive
canceller is presented with a aingle sinusoidal reference sailgnal,
sampled at exactly four samples per cycle. The normalised frequency
of the refarence signal is that exactly 1/4 anda

x{n) = cos (nms2) (2.30)
Thia signal may be generated uaing the recuraion equation:

x(n) = -x(n-2) with x(0) =1, Xx{-1) =10 {2.31)
One advantage of using such a reference signal is that only a two
point FIR filter heed be used to generate signals with arbitrary

amplitude and phase, and this filltering operation has the
interpretation that if

¥(n) = wg X(n) + wy x(n-1) (2.32)

this is equal to

12,



y({n) = wg cos {mn/2} + wy s8in {nw/2) (2.33)

In this case, there is no distinction between a time domain algorithm
and a fregquency domaln algorithm gince the two coefficients are
already oparating on the ‘real)' and ‘imaginary' parts of the only

frequency present.
Tha primary asignal in the simulation has the form
d(n) = -1.0 cos {(nn/2) + 0.9 aln (nnN/2) (2.34)
A two coefficient £ilter is updated using the standard SG algorithm

to minimise the difference between its cutput, ¥(n), and the primary
signal A{n). The inatantaneous value of this arror aingal e(n) i=s

shown plotted for 128 samples in figure 2.2. Also shown is the
square of this signal averaged with a two point moving average
filter,

E(n) = (e2(n) + e%(n ~ 1))/2 (2.35)
and the trajectoriea of the two coefficients. Since e(n) has a

normalised frequency of 1/4. the alternating part of e2(n) has a
normalised frequency of 1/2 and may be accurately averaged over two

points, as in equation 2.35.

A convergence coefficient of a = 0.1 was used in this sgimulation,
although values of up to a = 2 were atable, and the fastest
convergence is given when o« = 1 in which case the filter adapta

within cohe cycle.

If the standard theory, outlined above, is used to analyse this
sysatem, the task is considerably simplified by noting that for xX(n) =

coa(nr/2),
R=171 (2.286)
and the two eigenvalues of R are both equal to 1/,

The convergence of the coefficients is thus already independent,
without transformation. The update equation 2.14 thus becomes

13,
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Vogl = (1 - a/2) Vg (2.37)

Not only 18 the convergence of the coefficients independent according
to this equation, but thelr time constants of convergence are also
predicted to be egual.

This is exactly as observed in figqure 2.2., although the predicted
time constant of convergence is fouhd to be in error for fast
adaption. Equation 2.33 predicts that if « = 2, so that the temm in
brackets is zero, then the aystem will adapt within one cycla. It
also predicts that the aystem will be stable if the term in brackets
is nearly equal to -1 i.e, a is nearly equal to 4, This ia clearly
at variance with what is found in the simulation, and the error comes
from the assumption of 'slow' adaption in the derivation in Section
2,1,

Applying Glovers analysia [19] to this saystem, tha equivalent
transfer function between the error #signal and desired signal ia
founhd to be edqual to:

2
EZ) _ B +1 (2,38)

b(z) 22 + 1 - o

This tranafer function has a pair of zerog at Z = t] and a pair of

poles at Z = t § yo — 1. If « = D the poles and zeros are coincident
and the transfer fupction 18 unity, 4i.e, it never adapts, as
expected, If o =1 the poles will lie at the origin of the Z plane,
and the transfer function loses its recursive form, becoming an
entirely FIR system and having a response that dies out within two
samples. If o approaches 2 the position of the poles approach #£1,
which predicts that the aystem is unstable for o = 2, All of these
properties are found eXactly in the simulation which suggests that
the equivalent transfer function approach does predict the £full
‘dynamic’' behaviour of the algorithm,

The djifference equation between the error sequence and tha desired
sequence, corresponding to the transfer function in equation 2,38, ia

15,
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e(n) = a(n) + a(n-2) - (1 - a) e(n-2) (2.39)

Nota that 1f the dQesired aignal has the same £frequency as the
reference it will alpo cobey the difference equation &(n - 2) = -4(h),
by analogy with equation 2.31, and the difference equation becomes

e(n) = (a-1)en-2) (2.40)

This is similar in form to equation 2,37, and predicta the error
regponse to be that of a simple first order system (at half the
sample rate of A(n)) as found in the simulations,

If a number of harmonic frequencies are present in the primary input
it has been shown [20] that there ara considerable advantages in
uping a reference signal which is a periodic inpulse train with the
same fundamental pericd as the primary, say N samples, 8o

o
x(n) = y B(n - RKN) (2.41)
k

Thia can reduce the number of operations required to implement the
algorithm from 2N multiplications and 2N additions per pample to cne
addition per sampla. This reference signal aleo leads to a
particularly simple equivalent transfer function,

The behaviour of this harmonic algorithm can also be analysed using
the mathod outlined in Section 2.1, Although we cannot axpect to
obtain reliable predictions of the response if the system is adapting
‘quickly', some additional insights are gained by examining the
autocorrelation matrix which has the apecial form in thie case;
R=1I. S0 again the convergence of the coefficienta is independent
and they all converge with the same time constant aince the
eigenvalues are equal., If a referepce signal of this form cah be
uaed the convergence of the algorithm will be as fast ams any ather
algorithm which attempts an orthegonalisation of the input prior to
adaption,

16I



2.3. APPLICATION TO ACTIVE CONTROL

An active control system with a single secondary source and a aingle
error sensor can be conaidered as a geheralisation of an adaptive
canceller. The moat important difference is the introduction between
the filter output and error summing junction of an extra transfer
function to account for the responses of the =source and sensor and
that of the system to be controlled. This secondary path, with
tranafer function C, is illustrated in fiqure 2.3 in which the
notation normally asesociated with active noise control has Dbeen
subatituted for the signal processing nomenclature used in figure
2,1. Note that a(n) is now added to d{n), rather than being
subtracted as in figure 2.1. This haa no effect on the analysis
leading to the filtey update equation above, equation 2.5, except to
change the sign of the update term.

The introduction of the secondary path tranafer function into a
canceller using the standard SG algorithm above will generally cause
instability [21]. Thia is because the error signal is not correctly
‘aligned* in time with the reference signal, due to the presence of
¢, when the gradient estimate is calculated.

There are a number of possible achemes for realigning thesa signalse
o as to obtain an unbiased gradient estimate and thus achieve
convergence. ©One method has bean recently termed the ‘filtered x'
algorithm [reference 6, p 288], although it was also reported by
Burgess jin 1981 [22], and has an intuitive interpretation in terms of
the block diagram of figure 2.3. If the adaptive £ilter is asaumed
to be changing only very slowly compared to the timescala of the
dynamic hehaviour of the error path C, then the ayatem is nearly
squivalent to that drawn in figure 2.4, with these elements reversed.
If we now redefine the reference signal as being x{n) in figure 2.4,,
it is clear that a ptandard SG algorithm could be used on this
equivalent system. The update equation in this case would bet

w{ (n+l) = wi{n) - ae(n) r(n-i) (2.42)

However the signal r(n) is not available in the physical ayatem of
figure 2,3, An approximation to it can, however, be artificially
generated by passing x(n) through an electrical ¢£ilter which ia

17.
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Figuro 2.4, Block diagram

/

to axpiain the filterd x algorithm,
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arranged to have a similar respense te that of the error path C.

wWhen this algorithm is implemented two suprising things are obssrved.
Firgtly the convergence of the filter can be achieved much more
quickly than the above argument would suggest, and gecondly the
algorithm appears to be very tolerant of errore made 1in the
estimation of C by the filter generating r(n),

2.4, FILTERED x ALGORITHM AT A SINGLE FREQUENCY

It has been found that considerable insight cah be chtained into the
behaviour of the filtered x algorithm 1i1f a single, aynchronously
sampled sinusoid is used as a reference signal. An exact theoretical
analysis of the algorithm can be performed in this caase, which ia
presented in the next section. We concentrate herse on the results of
a computer simulation using a referxence singal x{n) = cos(nm/2), as
in section 2.2. above.

The block diagram of the simulation is shown in figure 2,.5. in which
the primary signal is derived from the reference with a 2 polnt PIR
filter, and the error path is modelled as a pure delay of 10 samplea.
The gignal r{n) is generated by passing x(n) through an exact version
of the error path, although in this case delays of integer periocds of
the reference have no effect and a delay of two samples producea the
samne signal as a delay of ten samples.

+
= -1.0 + 0.9 2-1 a0 £ D
+ e(n)

- Adaptive — ~10

- > c=12
x(nl fiiter y(n] an]
= cos{nr/2)

=22 [m— rin

Figure 2.5. Block alagram of the simulation performed to Lnusstigate tho

performanice of tha flltered x algorithm with a stnusoidal
referance signal.
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Figure 2.6 shows the square of the error signal, averaging over two
samples using equation 2.35, for 128 samples of the simulation using
various values of the convergence coefficient, o. It is founa that
values of o approaching unity do not give a stable ayastem, in
contrast to the case where the error path is absent as coneidered
ahove, The fagtest convergence 19 observed with o« = 0.1, as in
figure 2.6b. It is instructive to also observe the behaviour of the
averaged error signal for variocus other values of a, For example
those for @ = 0,05 and & = 0.2 are presented in figurea 2.6a and c.
It is striking how these graphs are reminiscent of the overdamped and
underdamped response of a gimple second order aystem, Figure 2.6b
would, Dby analogy, correspond to the case of critical damping.
Although the error for all cadea presented in figura 2.6 eventually
decays away to zero, unstable behaviour is observed when a i8 greater
than about 0.3, in which case the amplitude of the oscillations
observed in figure 2.6c grow with each cycle, If o = 0,3, the
period of these oscillationa corresponds to the delay in the error
path, if o is reduced the period of oscillations becomas
progressively longer as they become more heavily damped.

The convergence behaviour of this system with variocus other delays in
the error path has also been inhvestigated for various values of a.
The °*Convergence time* of adaption, measured as Dbelng wheh the
averaged error decays below 5% of its initial wvalue and does not
subsequently rise above thie value, is plotted against a for these
gimulations in figure 2.7. The different courves correspond to
various values of pure delay in the error path, The convergence time
of the algorithm with no error path is given by the Qiagonal line and
it is intereating to note how all the curves tend to this one for
very amall values of a, With no error path the convergence time is
inversely proporticnal to o, in agreement with equation 2.26. The
value of a for which the convergence time is fastest is plotted
against the delay in the secondary path in figure 2,8. The optimum
value of a 18 found to be approximately equal ta 1/4D ih this
simulation, whers D i3 the number of cycles delay in the secondary
path. fThis gives a dquantitative form to the intuitive result; that
the convargence must slow down as the response of the gecondary path

gets longer.
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Figure 2.7 can also be used to obtain the minimum convergence time
for a variety of delays in the error path. This is plotted in figure
2.9, which illustrates that the minimum ceonvergence time rises in
proportion to the delay in the secondary path, In thia simpla case,
the minimum time for ¢he total mean square exror to converge to
within 5% of the final value i1s about twice the delay in the
secondary path, If the log of the mean sguare error is plotted
against time in the simulatiena, two distinct regions of the
convergence are ohbserved. Firstly there is a period during which the
mean square error does not change. This lasts for a time
approximately equal to the delay in the secondary path and is
obviously due to the effects of the adaptive filter taking some time
to propagate through to the error. Secondly the decay of the errar
has an envelope wﬁich is approximately exponential, whether the decay
is monotonic or oscillatory. In the simulations performed above the
sum of this initial delay and time taken for the exponential decay to
5% of the initial mean square value (i.e., an attenuation of 13 dB)
was found to bhe approximately twice the secondary delay. Thua the
fastest exponential decay rate is about 13 dB per unit of secondary
delay, and the time constant for this exponential decay to fall to
l/e of its initial value (i.e., -8.7 AB), is approximately 0.67 times

the secondary delay.

These obaservations can be used to predict the convergence time
defined according to different criterion to that used above., For
exampla, the time for the mean aquara error to fall to 1% of itse
initial value {-20 dB) will he approximately (1 + 0.67 x 20/8.7) =
2.5 times the secondary delay., Similar trends in convergence tlime
are observed in simulaticons with more complicated secondary paths, 1in
which recursive terms as well ag an overall delay are used,

2,8, ANALYSIS OF SINGLE FREQUENCY ALGORITHM

In this pection we use the philosophy of approach developed by Glover
{19] to obtain an equivalent tranafer function betwesn the desired
gignal, considered as the input to the system, and the error signal,
considered as the output of the system. It is found that if the
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reference ls a synchronnusly sampled sinusoid, or the sum of a number
of these, then the adaptive canceller behaves exactly like a linear,
time invariant system between this input and output. fThe transfer
function can thus be used to calculate the response of the aystem to
any input excitation and also, more importantly, can be used to
investigate the stablility of the algorithm by examining the positions
of the poles of the transfer function.

Using the nomenclature in figure 2.5, in which the adaptive £ilter is
fed from a reference signal of the form

¥(n) = co8 (wgh) {2.43)

The output of which passes through a secondary path £ilter (C) before
heing added to a desired mignal to form an error signal, which 1@ fed
back to the adaptive filter., A filtered x algorithm ia used to adapt

this filter, so that
wi(n + 1) = wi(n) - a e(n) r{n-i) (2.44)

Tha filtered referance signal, r(n) is formed by passing x{n) through

an estimata ( e) of the true secondary path. By making this filter
¢ifferent from C the effect of arrors in the estimate of the error

path transfer function can be investigated.

The filter e is, however, only axcited by X(n) at the referancas
frequancy, uwg, So 1f the modulus and phase of its transfer function
at thies frequency are;

A Jw
cte °) = Mel®

the filtered reference signal must be
xr(n) = Mcos (wgn + ¢) (2.45)

r(n~-31) = Mcos (Wh + ¢ - wyl)
= M/2 [ejuon 28— wol) | ~ugh =3(® = wol) ]

(2.46)
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In the update term for the coefficlent wi, this signal is multiplied
by e{n). If the Z tranaform of e{n) is E(z), the 2 transform of the

product e(n) r(n-i) ia

2 [B(n) r(n-i}) } = é’! [Bdto—moi) Bz e"j“’o)

+ e 3 Wol) gy gIko, ] (2.47)

Now taking the Z transform of the update equation, with Wi(z) as the

Z tranaform of wi{n};

Z Wy(z) = Wi(z) - ‘-2-@ [ et® wol} E(ze—ju")

+ o (P = Uol) gy gd¥ey ]

Wi(z) = - gﬂ uz) [ejw = Wol) g(ze™I%0,

+ o (P~ wal) g gduoy ] (2.48)

where U(z) = 1/(z - 1)

The output of the filter, y(n), la formed from

I-1
y(n) = ¢ wi(n) x(n-i) (2.49)

=0

where x({n=-1) = cog {wyh - wyl)
= '2]; (edWolt gJuol . y=Jueh gJwol, (2.50)

If we take the Z transform of each term in the summation for y(n}, we

have
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-1
%) =3 g [“1(2 e 300y g7I0ot | gy (zal¥0y gIU0t ]

1=

I-1
Y{z) = - %E z [ u(z e-—jh’o, e-jmoi [ej(¢ - u°1)
i=0

E(z e 3200y 4 7 HEUL) piz) | 4 ugzele) o300t

[ej‘°"“°1’ Bz) + o H® = Wol) gy gl ] . (2.52)
gy e I ~1uigy =10 Jug, o3¢
owzy =% ¢ {[E(z) [U(z a~19ya™1% | iz oI e ]]

i=0

+ [E(z e 19y yez a7y 1P 2Wol) |y 0120y yep @30,

a 3@ — 2uoi) ] ] (2.53)

The equation in the second square brackete contains terms of the

%
form e 201 multiplied by a number of other terms which do not
depend on i and can thus be taken outside the summation. Evaluating
the summation of these axponential terms

LI R R pti20g(I-1) Sin (wol)
R - sin (uwg)
i=0

(2.54)

If the reference signal ia aynchronously gampled and the number of
filter coefficients is equal to an integer (k) multiplied by half the
number of samples per cycla,

I = kn/w,

Therefore Wy = Xn/L
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. Sin (waI) . Sin (km)

. sIwwg— © BIATRWIT - ° (2.55)
consequently the second term in the square brackets in the asummation
above ie identically zero, We are left with I jdentical terms in

E{z) and substituting for U(z), we obtain

-3¢ I
IaM e e
Y(z) = - == E{z) - +
4 [ z @ ¥0_ 1 gelto_y ]
¥z) ., _ IaoM [zcos(%-ﬁ)-c080}=5(z>
E(z) 2 1l - 22 coB (ug) + zz

(2.56)

This represents the transfer function of a linear, time invariant
system. The secondary signal may be expressed in the & domain as

S5(z) = C(z) ¥(2) = C(z) G(z}) E{(z)
but  E{z) = Dz} + 8(z)

E(z) _ 1 ~
80 D2y - 1= ¢z Gzy = M=) eay. (2.57)

whare H{z) 18 the tranafer function between the error output and
depired input, and the entire active controller acts as a linear time

invariant system batween these two signala,

Subgtituting for G{z) above and letting

A= e~ wa obtain

1l = 22 co8 (Wg) + z2
1 - 2z co8 (1) + 22 + B C(Z) (Z coB (g - &) — co8 &)
(2.58)
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This result is important because for a given error path, c(z), it
allows tha behaviour of the soystem to be determined analytically,
Sinca no approximations have been made in the dexivation of H(z), the
complete behaviour of the system must be described by this
behaviour,

This equation allows the conditions on the accuracy of the estimated
secondary path, C, to be deduced in the limit of slow adaption. If
the adaption is assumed to be very slow, if.e, g8 - 0, a reordering of
the transfer functions W and C becomes increasingly valid. The block
diagram of the aystem now looke like figure 2.10a. If we redefine
the refarence aignal as g in this figure, which ia alaso a sinusoid at
up, and let e(z) = C(2)/C(z) be the error in the estimate of the
arror path, the block diagram becomes that in figure 2,10Db, The
tranafer functiohh in the error path has completely disappeared f£rom
this diagram so we can get C(z) = 1 in the equation above, however
the error in the estimate of the pecondary path remaine as ¢ which
has a phase response aof ¢ at uwy. The transfer function of this
syatem thus becomes

Hz) = 1 - 22 coa (ug) + 2°
1~ 2Z cos (uo)+22+ﬂ(z cos (uwg ~— ) — P CoB @)

1~ 22 cos (wn) + 2

zz-—(z cos (Wg) = B Co8 (Wy — $))Z+ (1 - 3 cos )
{2.59)

This is a second order recursive Bsystem whose sgtability can be
inveastigated by examining whether the pole positions are within the
unit ecircle. For small A, H(z) will have conjugate poles at a

aistance of ¢ L - B cos & from the origin. Since all the terma in @
are assumed positive, the distance of the pole from the unit circle
can only be greater than 1 if cos ¢ is negative, so the stability
condition must be;

cag ¢ » O o 90° » & » ~50° (2.60)

An additional condition for stability [23, p 169 ] is that
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Mgurs 2.10, Block dtagram for the adaptive syatam in the case of vory
slob adaption tn (a) phyatcal form and (b) reduced form.

| 2 cos (W) ~BcoB (wg~@) | <2 (2,61)

Since cos {uy} » 0 and B is aspumed small, this condition must also
be satiafieqd,

The time constant of convergence of an adaptive canceller with a
sinusoldal reference but no extra transfer function in the error path
is inversely proportional te o [20]. Assuming the adaption of the
filtered x algorithm is already alow, to account for the dynamic

properties of C, its convergence is further slowed if e is not a good
mateh to € at  wy. Tha analysis above indicates that the time
conatant of convergence ia slowed dowh by a factor of 1/ cos ¢, where
¢ is the phase dAifference between o and C at wy, ILf we conaider
only frequancies about wn in the full block diagram of figure 2.l10a,
the error sgignal has been passed through a filter (C), with a
magnitude response of approximately M at wg,, The filtered reference

31,



pignal  r(n) is also proportional to M, hy definition, The
magnitude of the update term, a e(n) r{n-1) will thus be a factor of
M2 larger than if ¢ had not been present, This poses problems if
multiple sinusoids are present in the reference sighal since, in
general, the modulus of the response of the filter C at each of these
frequencies will be very different. Since only a single value of the
convergence coefficient can be used, which applies to all the
frequency components in the refersnce, this muat be chosen so the
aystem is stable for the frequenhcy at which the response of C 1is
largest, This will considerably slow down the convergence of the
algorithm at frequencies where the responge of C is small, Such
behaviour is analogouse to that due to the eigenvalus Bpread of the
raference input discusged in Section 2,1.

2.6 Fquivalent tranafer function of the simulations

"he aimulationa reported in section 2.4 were of a synchronously
sampled ayatem, which can Dbe represented, using the results of
sectiona 2.5, as equivalent transfer functiona. In this mection we
compare the properties of these tranafer functions with the behaviour

chaerved in the simulations,

In the £irst simulation (corresponding to figures 2.5 and 2.6) above,
we had;

W= n/2, C(zy=2z —1? e(z) =272

Thus coB {wg) =0, ¢ =7, €08 (i — ¢) =0, g = o and the general

transfer function of eguation 2,58 reduces to

-2
Hz) = -—2t2 (2.62)

This remarkahly simple transfer function has zeros at z = = j and
poles corresponding to the roota of the denominator. fThis twelfth
order equation cannot be sclved analytically, but has been aolved
numerically for wvarious values of a, and the resulting poles are
plotted in figure 2,11, For very small values of o, onhe piir of

J
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poles are almost coincident with the zeros at z = t 3, and the other
ten move rapidly away from the origin, For these small values of «,
the behaviour 1s dominated by the poles and 2eros near t § and the
transient response im that of a decaying exponential, as obgerved in
figure 2.6{a). As & 13 increased the two pole paire on the imaginary
astis meet when a = 0,07, which corresponds approximately to figure
2,6(b). These pole pairs then break away from the imaginary axias and
move outwards with increasing o, The transient behaviour in thie
region is dominated by these 4 poles each conijugate pair of which
give a decaying sinusoidal response. ‘These two decaying sinusoida
beat together giving the behaviour obgerved in figure 2.6{c)., The
beat frequency gradually rises as A increases, and distance betwean
the pairs of poleg neareat * Jj increases, For &« & 0,3 these poles
migrate outgide the unit circle and the system becomes unstable.

Similar transfer functiona can be obtained for other secondary
delays, for example if the delay is one cycle cof the reference
aignal, i.e. 4 sample periods, the transfer function hecomes

H(z) = ——.-l—.t.-E.- (2.53)

The trajectories of the 6 poles for this tranafer function are shown
in figura 2.12. These show a Similar behavicur to those above except
that only 4 poles move out from the origin, Apart from reinforcing
the general interpretation given above, it is poasible to solve for
the pole positions exactly in this case by using zZ2 as the variable
in the denominator and sclving the resulting cubic equation. Such an
analysis showa that the roota of z2 are real for a < 4/27 but
imaginary for values of a greater than this value. This values of a
(0.148) thus corresponds to the point at which the poles on the
imaginary axis meet, which agrees with the trajectories of figure
2,12,
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Figure 2.11

1ED

Pola poattions for the squivalent transfer functton of the
filtared ¢ algorithm with a delay of 10 samplea in the
socondary path. With the convergence coefftclent, &, very
small there care tan poles svenly disiridbuted about the
origin, and two poles Jjust tnaide the unit circle noar

= = %j, The pole positions for a = 0.01, 0.02, 0.04, 0.06,
0.08, 0.10, 0.15, 0,20, 0.25 and 0.30 are also shoun.

Imag

Mgura 2.12

Pole poatitions for the equtvalent itransfer function of
the filtarad x algorithm with a delay of 4 samplea in the
secondary path, for a = 0,02, 0.05, 0.10, g.15, 0.2, 0.4,
0.6, 0.8 and 1.0. 34

L]



I ——

3. ADRPTIVE PILTERING IN MULTICHANNEL SYSTEMS

3,1, FORMULATION OF THE PROBLEM

We will agsume that the physical gystem we are trying to control, and
the tranaducers we are using, are linear. This assumption can be
relaxed somewhat 1n practice, but is important as a starting point in
the discussion., The primary field (acoustic or vibratiohal) present
in the system without any active control is assumed to be corralated
with an obpervable reference signal and also is assumed stationary,
although again this assumption willi be relaxed later on. This
primary field is actively controlled using M actuators (typlcally
loudspeakers or shakers) whose input is controlled so as to minimise
the time averaged sum of the squares of L error sensors (typically
microphones or accelercmeters), This aobjective for the active
contyxol aystem iz onhe which has been arrived at as a practical
golution to the criterion of the minimisation of acoustic potential
energy in an enclosure [24]. The placing of the actuatorg and error
pensors 1B not discussed in this report, although it im noted that
under certain conditions surprisingly few transducers need be used to
achieve substantial reductions in total energy [24].

An equivalent block diagram of the active contreol syastem may be Aarawn
if it is assumed that the contributions from the primary field to the
outputs from the error gensors are derived from the reference signal,
Thie asspumption does not restrict the class of pystem being modelled,
although the vector of transfer functions relating the reference
signal to the errer sensora (A) has no obvious physical
interpretation. The cemplete block diagram is shown in figqure 3.1,
whare W represents the vector of M adaptive filters used to drive the

secondary sources.

The signhals dascribed in the fiqure are entirely electrical, The
electrical outputs from the error sensors and input to the secondary
sources are the only sighals used by the control system. WNoting the
assumption of lipearity in the transducers as well as the physical
Byatem to Dbe cohtrolled, allows the use of the principle of
puperpoaition to derive an expression for the outputs of the error
gengors, No separate consideration need be made of the interaction
effacts between the sources and sensors and the physical syatem,
Loading for example does not need to enter the discussion.
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3.2, A MULTICHANNEL STOCHASTIC GRADIENT ALGORITHM

Let the sampled output of the @#th error sensocr be ep(n), which ia
equal to the sum of the primary deaired signal from this pensor,
dp{n), and the output Aue to each of the actuatora. Iet the aampled
input to the mth actuator be sp(n), and the transfer function between
this input and the output of the 2th sensor be modelled as a Jth
order FIR filter, whose ith coefficient iB cpyy, 80 that;

M J-1
eyn) = dp(n) + y 7 Cmj Bmln-1) (3.1)
=1 j=0

It is assumed that there are L sensors and M actuators, and that

L » M. Let the total error, E, be defined as;

L ee———

E = 5 e (n) (3.2)
2

where the bar indicates that a time average has been taken, If the
referepce signal, x(n), is at least partly correlated with each
dp{n}), it is posaible to reduce E by driving the actuators with an
PIR filtered version of the reference asignal;

-1
Bp(n) = ¢ wmi x(n-1) (3.3)
1=0

where wpi is the ith coefficlent ©of the filter driving the mth

actuator.

The total error will be quadratic function of each of these filter
coafficients, and the optimum set of filter coefficients required to
minimise E may be evaluated adaptively using gradient descent
methods, The gradient of the total error with respect to one

coefficient ia,

L~ ge(n)
gém'I =2 p egm gk (3.4)
2=1
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Differentiating equation (3.1) using equation (3.3) gives

J-1
-gz—:iﬁ) = - ¢ cmy X(n-i-9) (3.5)

3=0

This sequence i1s the same as the ohe which would be cobtained at the
Ath sensor 1f the reference signal delayed by i samples were applied
te the mth actuator. Let this be equal to rpm{n-1).

If each coefficient is now adjusted at every sample time by an amount
broportional to the negative JInatantanecus wvalue of the gradient, a
modifed form of the well known LMS algorithm is produced;

L
Wni{n+l) = wpi(n) - o T ap(n) rgm{n-1i) {3.6)

=1

wheras a 18 the convergence coefficient,

For a aingle input, aingla output aystem (IL=M=1), this correaponds
exactly to the "filtered x IMS" algorithm discussed above.

A physical interpretation of the present algorithm can be obtained by
considering the equivalent block diagram of the sgyatem; the block
diagram of a simplified system is shown in figure 3,2a, with a single
actuator producing an output y{n), which affects the outputs of two
senoors, via the transfer function C; and Cp.

The two error asignal e;(n) and ez(n) are the differences betwesn these
cutputs and the desilred signals d;{n) and aAz(n). The output, y(n), ias
Produced by driving the FIR filter W with the reference aighal x(n), If
the filter W is lihear and time invariant, this block diagram is equivalent
to the one in figure 3,2b, in which the signal ry(n) and rz(n) are produced
by passing x(h) through C) and C; reapectivaly.

If the n'th coefficient of the filter W were to be updated with the
conventional IMS algorithm in either the upper or lower branches of figure
3.2L, the update terms would be of the form ej{n) ry(n—1) or ez(n} ra{n-2)
regpectively. If dy{n) and dp(n) were perfectly correlated with x(n)
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elther e;(n}) or ez(n) could be driven to zZero by the actionh of the LMS
algorithm operating in isolation on either the upper or lower branches.
However what is required here is the minimisation of the sum of the mean
squara values of both errors, which in the steady state requirea that the
gradient of the total error with respect to each coefficient is zero,
Updating the coefficients with the sum of the two update terms above
achiven Fhia objective since the average value of the sum of the individual

instantaneous gradients is equal to the sum of the average of these

gradients,

3,3, COMPUTER SIMULATIONS OF THE ALGORITHM

A computar program has Dbeen written which simulates an active control
system with four error sensors and two secondary actuators, A Dblock
diagram of the pimulated system is given in figure 3.3, The program
agsumes a asilngle frequency excitation which is aynchroncusly sampled at
exactly four samples per cycle, as above, If the primary field is assumed
to be stationary its contribution to each of the four error sgensors may
also be derived via four two-point £ilters without loss of generality. In
order to begin to model the dynamic response of the pystem realistically,
both anh overall delay, and some form of ‘'reverberant' behaviour must be
included in the model of the response of the R'th error @ensor to the
output of the m*'th secondary source. This has been incorporated into the
model by simulating the difference equation between the m'th source and the

gth sensor as

e n) =a, 8(n-p,)+b, &n-~d,) (3.7)

The transefer function of which is

E!_(_f) c = ~Pam - ~dim

503) mi2) = agm % /1—-Dbpmz (3.8)
This model has an overall delay of pyn Samples, and the recursive term
given a first approximation to reverberant behaviour by causing past values
of the error signal to recur in the output after qpy samples. The values
of Ay, Pim. Dgm and Qg for each of the eight filters are indicated in
figure 3.3. They were chosen at random to be in the ranges 1 %= 0.5, l4 %
4, 0.55 £ 0.24 and 6.5 * 1,5 respectively. The average delay between a
secondary source and error Sensor is thus 14 samples or 3% periocds of the

refarance excitation.

40.



0.5 + 0.9 27!

— W, tw,, 2 —e——
10 11 .

A

Yy

1.2 -0.7 27!

x{n) = . 2_19 J "
T, 1 -
cosin/p} 1_0528

Y

= " Wag * Woqp 2

\

Y

(= 0,3+ 1.1 27"

~N
b
—]
A
+

Y

0.7 +1.3 27

Y

1-04 28 (]

FIG. 3.3
BLOCK DIAGRAM OF THE SIMULATION PERFORMED WITH TWO SECONDARY SOURCES AND FOUR ERROR SENSO

it b s i e A s s



The individual differences in the delays were introduced to simulate tha
difference in propagation time between variously positioned sourcea and
gensors in a real system. ‘The values chosen in the recursive terms of the
difference equation moans that the average time constant of the decay of
thelr transient responses is about 10 samples or 2% periocds of tha
axcitation. fThe desired signals were genherated by passing x(n) through
four two point FIR fiilters. The coefficients of these filters were of
order 1, and the total error in the absence of any contribution from the
actuators had a mean square value of 3.23. In order to generate the eight
filtered reference sequences (rgm{n)). X(n) was passed through eight two
point PIR filters ad-justed to have exactly the same magnitude and phase
responses at the reference f£requency as each of the filters defined by
equation (3.8). Two adaptive FIR filters, with coefficients initially set
to zero, were used to drive the two actuator outputa from the reference
signal, and the coefficients of these £filters were updated every aample

using equation (3.6}.

The way the total error {(E) changed over 256 pamplea of the egimulation,
with a convergence coefficient (a) of 0.01, 18 presented in figqure 3.4.
e sum of the squares of all four arror asighals was spmocothed using a two
point moving avarage to obtain E. The value of this total error after 256
samples is within 3% of its values after several thousand samples. The
trajactories of both coefficients of both adaptiva filters over the same

period are shown in figure 3.5,

A value of a« of 0,01 gives approximately the fastest convergence time,
evan though some ovarshoot is present, Tf a« is reduced to 0.005 thie
overshoot dqisappears and the algorithm converges monotonically, but
slightly more slowly. The "overdamped" and underdamped” behaviour cbaserved
for the single channel algorithm with a pure delay (figure 2,6) is also
obperved in this multichannel case, This is 1llustrated in figure 3,6.
The simulated system was unstable for values of « greater than about

0.05.

3.4, ADAPTION TIME OF THE ALGORITHM

one apsumption implicitly made in the derivation of the algorithm was that
the properties of the adaptive filters were varying slowly in comparison

42,



eI

Total Error

0 1 L 1 L .
0 50 100 150 200 250
Sampla Numbaer

Figure 3.4 The total, averaged, squarsad error from the four sansor
for 256 samples of the stiautation with a = 0,01,

].-
m M—d‘""—
£
2
)
& 0 iy L — ) L
":'" —\I L r 1
3
L
g
- )
|+

T
-
-.1 -
1] 50 100 150 200 250

Sample Numbar

Flgure 3.5 The trajectories of the four adapting filter
coeffictents cover 256 samples of tha stmulation with

a= 0,01,

43,



L2
I

Total Error
()
H

(a) @« = 0,002

T~

1l \..._______H_“-*-—'-_-—-
0g 50 10 T ] 50
3
%mnple ]l\?umber'
ar :;
{(b) o« = 0,005 _ 3
53t
L
[
| 1T
-
3
2
] -
0g 3] 0 i) 500 550
?}amp]a l}fumbar
4 -
(e) a = 0,02
E&
&
—
o
I
9
] wﬁ\.’-"‘“‘"‘—"“‘““"-m_—_-—-—
Oy 50 o0 3] 00 550
éamp]e 1Ifumbezr-
Flgure 3.6 Total, aweraged, squarad error at the four ssnsors

against time for threae values of the convergence
coefflctent: (a) a = 0.002, (b) & = 0.005, (c) & = 0.02

44,



resaE Fusarhr dadobbd

with the timescale of the response of the syatem to be controlled, When
the algoritlin is implemented, however, the time constant of convergence,
measured from the initial slope of figure 3.4, to be about 10 periocds of
the reference signal, is of the same order of magnitude as poth the overall
delays and the reverberant timescales used in the simulation. This
reinforces the comment of widrow and Stearns [6] that the filtered x IMS
algarithm converges congiderably faster than would apparently be expected,
and extends this observaticnh to the multichannel case, Another finding in
the multichannel case is that there appears to ba no more intexference
between the convergence of the coefficienta of multiple £ilters than
between the coefficients of a single filter, despite the fact that the
update terms for each filter are coupled.

A further demonstration of the adaption time of the algorithm is afforded
if the magnitude of the primary excitation at each of the error sengors is
periodically modulated, Thig would, for example, be a simple represenation
of two primary sources, e.g. propellers, operating at slightly differeat
frequencies, It should be emphasised that the reference signals fed to the
adaptive filters still has a constant amplitude.

The total error with and without the active contrel system in operation
(using a convergence coefficient, o, of 0,01) is shown in figure 3,7. The
period of the modulation in this aimulation was 200 samples or 50 cyclas at
the excitation frequency, It can be seen that after a transient during the
initial 100 samples or so, the adaptive filters are able to closely follow
the changas in the primary excitation. This 1is confirmed by the
trajectories of the coefiicients over the same period which are plotted in
figure 3,8.

3.5, ALGORITHM ROBUSTNESS

The algorithm has algso been found to be wvery robust to errors in the
genaration of each of the filtered reference signals, rpm(n). In
particular the algorithm can be made stable even with nearly $%0° phasa
arror in these signals, although the convergence parameter must be reduced
somewhat to maintain stability in thias case. This phase condition is
intuitively reasonable in the case of slow convargence, 8since it implies
that the average value of the individual terms in each update equation
(ep(n) rpgm(n-1)) must at least be of the correct eign for the error to be
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reduced during adaption and thus retain atability. The robustness of the
algorithm 1is also demonstrated by other simulations which show that the
convergence 1s largely unaffected Dby the dintroducktion of either
considaerable uncorralated observation noise or moderate non linearity in
the transfer functions relating the sensor cutputa to the actuator inputs,

3.6, THE STEADY STATE SOLUTION

Although the algorithm described above ohviously achieveg some reduction in
the total mean aquare error, it is important to eatablish whether thia is
the optimal reduction which can be achieved with a given arrangemant of
sources and senscrs, 1In the analysis presented below, the elements of all
vectora and matricea are complex. The real and imaginary parta correspond
to either t:he‘ inphaze and quadrature componentsa of signals, or the real and
imaginary parts of the controller tranafer function, both evaluated at the
single frequency of excitation. Since the sample rate hag been chosen to
be exactly four times the excitation freguency, the coefficients of the two
peint PIR filters used in the controller are the same as the real and the
negative of the imaginary parts of the controllers transfer function.

Using nomenclature similar to that used in section 3,1, let

E = [EyE; B3 ... E, )7 (3.9)
be the vactor of complex error signalsg at w,.

¥ = [Y1 Y% ... ¥y )T (3.10)
be the vector of complex outputs from the £iltera,

A = [Ay Az Az ... ALT (3.11)

ba the vector of complex tranafer functions between the reference aignal

and the error sensors,

W o= [wywpwy wplT (3.12)
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ba the vector of complex transfer f£fuhctions of the £ilters in the
controller, and

10
|

Ci1 G2 .-
€21 Caz2 | (3,13)

CrM

be the matrix of complex transfer functions between each secondary source

and each error microphone,

The matrix equivalent of equation 3.1 in the frequency domain thus bacomas
E= A X+CY (3.14)

whara x is the complex ecalar reference signal, But ¥ = W X, 80
E = (A +CHIX (3.15)

The sum of the squares of the errors may be written in Hermitian quadratice

form as

o)
g [2e® = £ = (wicle w+ Wit 4 A% w4 ¥ X2 (2016

=1

This may be minimised by setting W to:

- H, . -1H
¥oE —l€E) Tea (3.17)

The error vactor corresponding to this controller is thus

Ept = [ B+ CWopt] X (3.18)

and the optimum sum of error oquared is

H H H H H
Eopt Eopr = [BR~RC[SC) CA 1 IX (3.19)



Table 3,1 showing the pot of filter coefficients and total mean asguare
error calculated using matrix methods and achieved after
various numberg of cycles in the simulation

Total Mean
Condition Wio Wys Wz Wis Square Error
Initial o} 0 0 0 3,235
Optimum -0.022 0,667 -0,153 -0,467 0,887

After 200 cycles
of simulation =0.179 0,595 -~0,212 -0.536 0,908

with o = 0,005

Aftexr 3000 cycles
of simulation -0,161 0.630 ~0.194 -0.524 0.913

with a = 0,005

The elements of A arxe readily identifiable for the simulation performed
above, from the block diagram of figure 3.3. The elements of the matrix C
must be obtained from the transfer functions, Cppm(2), listed in this

figure by letting z = ejw" vhere wg = /2, 80 2 = j,

Having identified the elements of A and C, the expressions for wopt and

H
—Eoptgopt were evaluated. The resulting set of optimal filter

coafficients and the mininum mean square error are shown in table 3.1,
Also showh in this table are the sets of fillter coefficients and final
total error observed in the saimulations above after varjious numbera of

cycles.

The first observation which can be made from this table is that the total
error in the simulationa never gets down to its minimum possible wvalue,
although it is within 2 or 3% of this value and so may be considered as
achieving it for moat practical purposes. The second point to note is that
although the algorithm appeared to have reached a steady atate in the
gimulations after several hundred cycles (figure 3.4.), it is in fact very
slowly changing after this and appears to reach a completely "stable* state
only after several thousand cycles. If the simulation is allowed to run
for a further thousand cyclea no change in the coefficients is observed.
The total error after 3,000 cycles is in fact =2lightly greater than after
200 cycles, There is no chvious reason for this and it is probably due to
finite precision effects In the computer., Of more direct interest is to
observe the change in the filter coefficients from sample to sample after
3,000 cycles. Because nong of the error signals are ever driven to zero

the individual terms in ths update equation (equation 3.6) are finite and
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proporticnal to the sgquares of sinusoidal quantities with f£requency 1/4,
Although the average of the aum of these terms are zero in the gteady
state, the fact that an instantaneous estimate of the gradient is being
taken means that the update term, although &amall, never completely
disappears. In fact, the algorithm reaches an equilibrium in which the
coefficients oscillate, about two stable sets of values, with a period of
half a cycle, This effect is similar to the misadjustment errors discussed
by Widrow and stearnz {6], which gives rise to a minimum error in normal
adaptive f£ilters which is slightly above the optimum.

3.7, MODIFICATIONS OF THE ALGORITHM

3.7.1, USE OF A MORE GENERAL COST FUNCTION

An error function or ‘cost' function which is widely used in the field of
optimal control {7] involves both mean aquare error terms and torms
proportional to the mean square effort, For example if yp(n) is the output
of the m'th £ilter, one cost function which could be used is;

5, M
J’I‘= T Ppe + ¥ qum (3,20)
=1 m=1

where Py and q, are the wajohtings on the individual errors (ei) and
‘efforts’ w;) respectively. The gradient of this cost function with

roppact to the 1'th coefficient of the m'th filter is

aJT L
. = 2 T p' ectn) r!m(n—i) + qmym(n) x(n-i) {3.21)
mi =1

and the stochastic gradient algorithm for the adaptive £ilter becomes

L
Hm(n-i-l) = wmi(n) - qmym(n) x(n—-1) + ) pﬂen(n) t!m(n-i)

=1
(3.22)
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Note that the use of this cost function only adds one, easily calculated,

term to the update equation for each coefficient,

The computer simulation of the multi-channel active control system
described in section 3.3 was altered to incorporate a simplified form of
this cost function: The values of all the error weighting coefficient, pp.
were aget equal (at unity) and the weilghting function for both of the
outputs (9; and 9;) were also set equal, at some variable value. If 9; =
9; = 0 the algorithm behaved as a section 3.3, as expected, As 9 ana 9,
were increased, the transient time of the algorithm did not appear to
change, but the steady solution, after 600 cycles of the simulation, began
to alter, For example, with 9y = 95 = 10 in the simulation the final mean
sguare error was 1,7 (compared to 0,93 when 9 = 9, = 0, and 3.2 bafore
adaption) and the £inal mean aquare value of the filter outputs was 0,127
(compared to 0.667 when 9; = 95 = Q). consequently the algorithm allows
much smaller secondary strengths to be used while 8atill achieving some

reductions in the error output.

Cogt functiohs such as these have already been discussed, for example, in
the highar harmonic control of helicopter wvibration [11]. Their uss would
appear to be beneficial whenever thare is a possibility of very large
gource strangths being necessary to achieve very small reductions at the
arror sensors, leading either to nonlinear behaviour or to increases in the

total field away from the error sensors.

It ie interesting to consider the scalar case of the LMS algorithm with
this modified coat function, which may be writen in vector form as

¥on T ¥, —ale(n) X +gyin) X ] (3,23)

substituting y(n} = 3: ¥ gives

T
W = [I - oq En g_cn ]..gn - & e(n) )_cn (3.24)

In the case where wg is w/2 and two coefficient filters are being
used, the 2 ¥ 2 matrix }_(n)_cTn will, on average, be equal to 1/2

multiplied by the identity matrix (equation 2,36), The average behaviour
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of the above algorithm is thus described by

W = YW -aen) X (3.25)

n

whare ¥ = 1 - ag/2 < 1,

This implies that in the absence of any update term the value of the f£filter
coefficients would gradually decay away. This expresaion is exactly the
same as that described by Widrow and Stearns [6, p 377] as the 'leaky LMS'
algorithm.

3.7.2. USE OF A WEIGHTED LEAST SQUARES CRITERION

It ip sometimes desirable not to minimise the sum of the mean square values
of a number of error signals, but to minimise the value of the largest one,
the ‘minimax' criterion. In general this minimisation problem is wvery
nonlinear and thus Aifficult to solve analytically. However it has been
suggesated by Burrows and Shahinkaya ([25] that a modified form of a leant
mean squars algorithm could be used as an approximation to this in which
the weightinge on the individual errors are varied depending on their mean
sguare value, Burrowe and Shahinkaya used an iterative matrix inveraion
formulation to golve their equations, and adjust thelxr error weighting
values after esach iteration. They found that the algorithm converged after

two or three iterations.

A similar approach can bae taken in the 5.G. algorithm described above if
tha effort weighiting functions (%n) are set aqual to zero, and the error
weighting functions are made equal to the averaged squared wvalue of the

ralevent error signal;

P, = & (3.26)

A -aimulation has been performed in which the mean sguare errors were
galculated uysing two point moving average f£ilters;

°§ = [ei (n-1) + ei (n) ]/2 (3.27)
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and used to modify each pp, every sample, according to the equation above,
The final results of this simulation were achieved after about 120 cycles
and it was found that the value of the largest error signal after adaption
was 0.47, compared to a value of 0.68 with all values of 9p equal to unity.
The mean square value of all the errors, however, increased to 1.08, from a
value of 0,908 with all values of 93 equal to unity,

In this simylation the maximum mean square error has been reduced by about
30% at the expense of an increase in the total mean square error of about
17%. It should, however, he noted that after convergence the other error
aignals have a mean sguare value well belaw the value of 0,47 quoted above.
Consequently this is not a true minimax algorithm, which would drive the

mean sqguare values of all the errors to the same (minimum) value.

If the expression for py in egquation 3,26 is substituted into the original
error criterijon of equation 3.20 with all qp = O, it can be seen that the
error criterion is the Ly norm of the error. This in contrast to the Lp
norm used in the normal S.G. algorithm above and the Iy norm which must be
uged in a true minimax criterion. In fact higher order norma can be
minimised, by taking pp = (eg)’-k. for example which would eventually
minimige Lpkin. A practical problem associated with such algorithms ie the
vary #8low convergence rate. Thisg is due to the large difference in
magnitudes of the individual termes of the ceoefficient update equation, a
similar problem to that discussed at the end of section 2.5
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